دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: جرم شناسی ، پزشکی قانونی ویرایش: 2 نویسندگان: Dragan Primorac. Moses Schanfield سری: ISBN (شابک) : 0367030268, 9780367030261 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 533 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Forensic DNA Applications: An Interdisciplinary Perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربردهای DNA پزشکی قانونی: یک دیدگاه بین رشته ای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Foreword Preface Acknowledgments Editors Contributors Part I: General Background and Methodological Concepts Chapter 1 Basic Genetics and Human Genetic Variation 1.1 Introduction 1.2 Historical Overview of DNA Research 1.2.1 Introduction to Human Genetics 1.2.2 Genome Structure 1.2.3 Chromosomes and Genes 1.2.4 Deoxyribonucleic Acid 1.2.5 Genetic Diversity 1.2.6 Variability of DNA 1.2.7 Structure and Nomenclature of STR Markers 1.2.8 Analysis of Sex Chromosomes 1.2.8.1 Y Chromosome DNA Testing 1.2.8.2 X Chromosome DNA Testing 1.2.9 Mitochondrial DNA 1.2.10 RNA Profiling 1.2.11 Application of New Molecular Markers 1.3 Potential Biological Sources of DNA 1.3.1 Basic Models and Steps of Forensic DNA Analysis 1.3.2 Collecting and Storing Samples 1.3.3 Determination of Biological Evidence 1.3.3.1 Blood 1.3.3.2 Semen 1.3.3.3 Vaginal Body Fluid 1.3.3.4 Saliva 1.3.3.5 Urine 1.3.3.6 Feces 1.4 DNA Isolation 1.5 DNA Quantification 1.5.1 Quantitative RT-PCR Quantification Technology 1.6 Polymerase Chain Reaction 1.7 PCR Methods 1.7.1 Multiplex STR Systems 1.7.2 PowerPlex® Fusion System 1.7.3 GlobalFiler® PCR Amplification Kit 1.7.4 Investigator 24plex QS Kit 1.8 Detection of PCR Products 1.8.1 Analytical Thresholds and Sensitivity for Forensic DNA Analysis 1.8.2 Sequencing 1.9 Massive Parallel Sequencing 1.10 DNA Phenotyping 1.11 Forensic Analysis of Plant DNA 1.12 Forensic Analysis of Animal DNA References Chapter 2 Forensic DNA Analysis and Statistics 2.1 Introduction 2.1.1 Genetic and Statistical Principles in Forensic Genetics 2.1.2 Principles of Parentage Testing 2.1.3 Hardy–Weinberg Equilibrium 2.1.4 Linkage Equilibrium 2.2 DNA Evidence in Court 2.3 Forensic Identification 2.3.1 Correction for Substructuring 2.3.2 Individualization and Identification 2.3.3 Parentage Testing 2.3.4 Paternity Index or Combined Paternity Index 2.3.5 Probability of Paternity 2.3.6 Random Man Not Excluded 2.3.7 Motherless Paternity Testing 2.3.8 Effect of Mutations 2.3.9 Maternity Testing 2.3.10 Parentage Testing with Mixed Populations 2.4 Identification of Human Body Remains 2.4.1 Victim Identification Using Parental DNA 2.4.2 Victim Identification Using Child’s DNA 2.4.3 Parentage Testing versus Forensic Identification References Chapter 3 Forensic Aspects of mtDNA Analysis 3.1 Mitochondrion and mtGenome Structure 3.2 mtDNA Copy Number 3.3 mtDNA Inheritance 3.4 Massively Parallel Sequencing 3.5 Alignment, Nomenclature, and Databasing of mtDNA Profiles 3.6 mtDNA Heteroplasmy 3.7 Nuclear mtDNA Segments 3.8 Application of mtDNA Analysis to Forensic Cases 3.9 Genetic Variability and Random Match Probabilities References Chapter 4 Y Chromosome in Forensic Science 4.1 Introduction 4.2 Sex Determination 4.3 Paternal Lineage Differentiation and Identification 4.3.1 Y-STR Markers in Forensic Genetics 4.3.2 Forensic Interpretation of Y-STR-Profile Matches 4.4 Paternal Male-Relative Differentiation and Identification 4.5 Paternity Testing, DVI, and Familial Search 4.6 Paternal Geographic Origin Inferences 4.6.1 Paternal Ancestry from Y-STR Haplotypes 4.6.2 Paternal Ancestry from Y-SNP Haplogroups 4.6.3 Y-SNP-Typing Technologies in Forensics Acknowledgments References Chapter 5 Forensic Application of X Chromosome STRs 5.1 Introduction 5.1.1 Changes in Allele Frequencies Over Time 5.1.2 Random Match 5.2 Mutation Rates 5.2.1 Frequency of Zero Mutation Rates 5.3 Exchange and Compatibility of Data 5.4 The Anthropological Genetics of XSTRs 5.4.1 Allele Frequency Differences 5.5 Future Directions Acknowledgments Appendix: XSTR World Distribution References Chapter 6 Increasing the Efficiency of Typing Challenged Forensic Biological Samples 6.1 Introduction 6.2 Pre-PCR Improvement Strategies 6.3 PCR Improvement Strategies 6.3.1 Polymerases 6.3.2 PCR Enhancers 6.3.3 Reduction of the Size of Amplicons 6.3.4 PCR Cycles 6.3.5 Whole Genome Amplification 6.3.6 DNA Damage Repair 6.4 Post-PCR Approaches 6.4.1 Cleanup of Post-Amplification Products 6.4.2 Increased CE Injection Time 6.5 Conclusion References Chapter 7 Mixtures and Probabilistic Genotyping 7.1 Introduction 7.2 Conventional Methods for Mixture Interpretation 7.3 Number of Contributors 7.4 Probabilistic Genotyping 7.4.1 Semicontinuous Modeling 7.4.2 Continuous Modeling 7.5 Validation of Probabilistic Genotyping 7.6 Challenges to the Process 7.7 The Future of Mixtures and Probabilistic Genotyping References Chapter 8 Rapid DNA 8.1 Introduction 8.1.1 Overview 8.1.2 How Rapid DNA May Expand Use of DNA Testing 8.1.3 Rapid DNA Instrument: How Rugged? 8.1.4 Rapid DNA: Especially Important to DHS 8.2 Rapid DNA Development 8.2.1 Overview 8.2.2 Legislative and Regulatory Overview 8.2.3 Initial Concepts and Efforts 8.2.4 Department of Homeland Security (DHS)/Small Business Innovation Research (SBIR) Program 8.2.4.1 People Screening (PS)–Integrated Product Team (IPT) 8.2.4.2 PS-IPT/Homeland Security Institute (HSI) Partnership 8.2.5 Federal Funding 8.2.6 HSI Gap Assessment 8.2.6.1 Phase I SBIR technical objectives 8.2.6.2 The Objective of the 2009 DHS S&T SBIR Phase II and III 8.2.6.3 Massachusetts Institute of Technology/Lincoln Laboratory Solicitation 8.2.6.4 Applications and Field Studies 8.3 Advantages and Limitations of Rapid DNA Technology 8.3.1 Technology Strengths 8.3.2 Technology Limitations 8.3.3 Technology Applications 8.4 Transition of Rapid DNA into Operations 8.4.1 Examples of Successful Rapid DNA Applications 8.4.1.1 Law Enforcement Offices 8.4.1.2 Rapid Processing of Casework in the Crime Laboratory 8.4.1.3 Rapidly Identifying Human Remains in Medical Examiner Offices 8.4.1.4 Mass Fatality Planning and Response 8.4.1.5 Combating Family Unit Fraud 8.5 Lights out Rapid DNA for Biometric Uses 8.5.1 Expanding Capabilities: Software Support 8.5.2 Expanding Capabilities: Reachback Support 8.6 Rapid DNA Over the Next 20 Years Notes References Part II: Uses and Applications Chapter 9 Collection and Preservation of Physical Evidence 9.1 Introduction 9.1.1 Sample Collection from Victim or Suspect 9.1.1.1 Known Oral Swab Standards 9.1.1.2 Liquid Urine and/or Fecal Material 9.1.1.3 Vaginal Materials 9.1.1.4 Nasal Mucous 9.1.1.5 Bite Mark Evidence 9.1.1.6 Skin Tissue 9.1.1.7 Clothing or Personal Items 9.2 Recognition and Identification of Blood Evidence 9.2.1 Presumptive Blood Tests 9.2.2 Confirmatory Blood Tests 9.3 Collection Methods for Blood 9.3.1 Dried Blood Stains 9.3.2 Liquid Blood Samples 9.3.3 Seminal Stains 9.3.4 Stains from Other Physiological Fluids 9.4 Blood Stain Pattern Analysis 9.5 Crime Scene Reconstruction 9.6 Case Examples 9.6.1 Murder in Texas: Artificial Intelligence (AI) Resolves DNA Evidence Recovered from the Crime Scene 9.6.2 Concetta “Penney” Serra Homicide 9.6.3 Brown’s Chicken Murders References Chapter 10 Mass Disaster Victim Identification by DNA 10.1 Mass Fatality Incidents 10.2 Postmortem or Morgue Operations 10.3 Antemortem or Family Assistance Center Operations 10.4 DNA-Driven Victim Identifications: Lessons Learned from the World Trade Center Remains Identification Project 10.5 Reconciliation and Conclusions References Chapter 11 Bioterrorism and Microbial Forensics 11.1 Definitions 11.2 History of Bioterrorism and Biological Warfare 11.3 Classification of Specific Bioterrorism Agents 11.4 Microbial Forensic Protocols and Practices 11.5 Criteria for Considering an Outbreak Unusual 11.6 Suspicious Infectious Diseases Outbreaks 11.7 Does SARS-CoV-2 Have the Potential to be a Bioterrorism Agent? 11.8 Biosafety and Biosecurity References Chapter 12 Forensic Animal DNA Analysis 12.1 Introduction 12.2 Felid Forensic DNA Testing 12.2.1 Case Studies 12.2.2 Development of a Forensic Typing System for Genetic Individualization of Domestic Cat Samples 12.2.3 Validation Studies of Cat Multiplex 12.3 Canine Forensic DNA Testing 12.3.1 Case A Details: Fatal Dog Attack 12.3.2 Case B Details: Homicide 12.4 Bovine Forensic DNA Testing 12.5 Wildlife Forensic DNA Testing 12.5.1 mtDNA in Species Testing 12.5.2 Species Identification Using Loci on Mitochondrial Genome 12.5.3 Mitochondrial Sequence Analysis 12.5.4 Conclusions on Animal Testing Acknowledgments References Chapter 13 Application of DNA-Based Methods in Forensic Entomology 13.1 Introduction 13.2 Methods of Insect DNA Analysis 13.3 Analysis of Human DNA Extracted from Insects 13.3.1 Case Study 1: A Caddisfly Casing in Service of Criminalistics 13.3.2 Case Study 2: Identity of Maggots Found on Outside and Inside of Body Bag 13.3.3 Case Study 3: Human and Insect mtDNA Analysis from Maggots 13.3.3.1 Insect mtDNA 13.3.3.2 Human mtDNA 13.3.4 Case Study 4: Genotyping of Human DNA Recovered from Mosquitoes Found at a Crime Scene References Chapter 14 Forensic Botany Plants as Evidence in Criminal Cases and as Agents of Bioterrorism 14.1 Introduction 14.2 Evidence Collection 14.3 Overview of Techniques 14.3.1 Microscopy 14.3.2 Species Identification 14.3.3 DNA Individualization 14.3.3.1 Amplified Fragment Length Polymorphism 14.3.3.2 Short Tandem Repeat 14.3.3.3 Random Amplified Fragment Polymorphism (RAPD) 14.3.3.4 Single-Nucleotide Polymorphism (SNP) 14.4 Examples of Plants with Bioterrorist Potential 14.5 Summary References Part III: Recent Developments and Future Directions in Human Forensic Molecular Biology Chapter 15 Forensic Body Fluid and Tissue Identification 15.1 A Shift of Focus: From Individualization to Contextualization 15.2 Forensic Identification of Body Fluids and Organ Tissues 15.2.1 The “Big Five” and Then Some 15.2.1.1 Peripheral Blood 15.2.1.2 Vaginal Secretion 15.2.1.3 Menstrual Blood 15.2.1.4 Semen 15.2.1.5 Saliva 15.2.1.6 Other Body Fluids 15.2.1.7 Organ Tissues 15.3 Classical Tests for Forensic Body Fluid Identification 15.4 RNA-Based Approaches to Forensic Body Fluid and Tissue Identification 15.4.1 Messenger RNA 15.4.2 Micro-RNA (miRNA) 15.4.3 Other RNA species 15.4.3.1 Piwi-Interacting RNA (piRNA) 15.4.3.2 Circular RNA (circRNA) 15.4.4 Methods of Forensic RNA Analysis 15.4.4.1 Multiplex PCR and CE 15.4.4.2 Quantitative Reverse Transcription PCR (qRT-PCR) 15.4.4.3 Massively Parallel Sequencing (MPS) 15.4.4.4 Other Methods 15.5 DNA-Based Approaches to Forensic Body Fluid and Tissue Identification 15.5.1 Forensic Epigenetics: Methylation Analysis 15.5.1.1 Methods of Forensic Methylation Analysis 15.5.2 Copy-Number Variations 15.6 Other Approaches for Forensic Body Fluid and Tissue Identification 15.6.1 Raman Spectrometry 15.6.2 Fourier Transform Infrared Spectrometry 15.6.3 Microbiome Characterization 15.6.4 Protein Analysis and Proteomics 15.7 Outlook Reference Chapter 16 Evolving Technologies in Forensic DNA Analysis 16.1 Introduction 16.2 NGS/MPS 16.2.1 Introduction to NGS Technology 16.3 NGS, Mixtures, and Mitochondrial DNA 16.3.1 Mitochondrial DNA and Mixtures 16.3.2 Software Deconvolution of mtDNA Mixtures 16.4 NGS and STRs 16.5 Rapid DNA 16.6 Conclusions Acknowledgments References Chapter 17 Prediction of Physical Characteristics, such as Eye, Hair, and Skin Color, Based Solely on DNA 17.1 Introduction 17.2 Complex Traits: Pigmentation 17.2.1 Eye Color Genetics 17.2.2 Hair Color Genetics 17.2.3 Skin Color Genetics 17.3 Developing Genetic Prediction Systems for Eye, Hair, and Skin Color 17.3.1 Genetic Prediction Systems for Eye Color 17.3.2 Genetic Prediction Systems for Hair Color 17.3.3 Genetic Prediction Systems for Skin Color 17.4 Future for Pigmentation Prediction and Forensic DNA Phenotyping Acknowledgments References Chapter 18 Molecular Autopsy 18.1 Molecular Autopsy 18.1.1 Molecular Autopsy: Definition(s) 18.2 Molecular Genetics 18.2.1 Genetics and Genomics in Sudden Natural Death 18.2.1.1 Introduction 18.2.1.2 Positive Autopsy 18.2.1.3 Negative Autopsy 18.3 Postmortem Pharmacogenetics 18.3.1 Pharmacogenetics and Medicolegal Death Investigation 18.3.2 Development of Pharmacogenetic Concept to Pharmacogenomics 18.3.3 Adverse Drug Reactions 18.3.4 Investigation of Death and Toxicology 18.3.4.1 Postmortem Pharmacogenetics and CoD Investigation 18.4 Investigation of Death Due to Neglect or Abuse 18.5 Conclusion References Chapter 19 Genetic Genealogy in the Genomic Era 19.1 Introduction 19.2 DNA Testing for Genealogy 19.3 Haploid Chromosome Testing 19.3.1 Y Chromosome Testing 19.3.1.1 Discovering Paternal Lineages 19.3.1.2 Future of Y Chromosome Testing 19.3.2 mtDNA Testing 19.3.2.1 Discovering Maternal Lineages 19.3.2.2 mtDNA Testing Options 19.3.3 Future of Haploid Testing 19.4 Autosomal Testing 19.4.1 Why Assay the Autosomes? 19.4.2 Meiosis: A Genealogical Double-Edged Sword 19.4.3 Genetic Genealogy with Autosomal DNA 19.4.4 Ancestral Origin Estimation 19.4.5 Relative Identification 19.4.6 Conclusions 19.5 Discussion Acknowledgments References Part IV: Law, Ethics, and Policy Chapter 20 DNA as Evidence in the Courtroom 20.1 The American Experience 20.1.1 Introduction 20.1.2 Standards for Admissibility 20.1.3 Contemporary Issues in the Courtroom 20.1.4 Elements for Statutory DNA Testing 20.2 The European Experience 20.2.1 Introduction 20.2.2 Jurisprudence of the European Court of Human Rights 20.2.3 Croatian Constitutional Court Decision (2012) 20.2.4 Implications of S and Marper in the UK 20.2.5 Standards for DNA Retention and Use in Criminal Proceedings 20.3 The Croatian Experience 20.3.1 Introduction 20.3.2 European Law and Application of DNA Analysis in Criminal Procedure 20.3.3 Application of DNA Analysis in Croatian Criminal Procedure References Chapter 21 Some Ethical Issues in Forensic Genetics 21.1 Introduction 21.2 General Concepts in Bioethics 21.2.1 Justice 21.2.2 Privacy and Confidentiality 21.2.3 Autonomy and Informed Consent 21.2.4 Utility 21.3 Ethical Issues in Acquiring DNA Samples 21.3.1 Crime Scene Samples, and Shed or Abandoned DNA 21.3.2 Sampling with Consent 21.3.3 Acquiring DNA Samples from Medical Providers or Researchers 21.4 Law Enforcement DNA Databanks 21.5 Phenotypes and Racial Identifications from Genotypes 21.6 Identification of Remains 21.7 Ethics of Forensic Laboratory Reporting and Expert Testimony Acknowledgments References Chapter 22 DNA in Immigration and Human Trafficking 22.1 Introduction 22.2 Relationship Testing in Immigration 22.2.1 Relationship Testing 22.2.2 Immigration Fraud and DNA 22.2.3 Rapid DNA Analysis 22.3 DNA Identification in Human Trade 22.3.1 Human Trade 22.3.2 Relationship Testing Strategies to Detect or Investigate Human Trafficking 22.3.3 DNA-PROKIDS 22.3.4 Dallas PDI 22.4 Ethical, Legal, and Social Considerations with DNA Identification 22.4.1 Defining “Family” in Immigration Procedures 22.4.2 Privacy of Genetic Information 22.4.3 Abuse of Power 22.4.4 Incidental Findings 22.4.5 Managing International Interoperable DNA Databases 22.4.6 Cultural Perspectives on Genetic Information 22.5 Summary Acknowledgments References Chapter 23 DNA Databases 23.1 Introduction 23.2 Recommendations for Forensic DNA Databases 23.2.1 Legislation 23.2.2 Contents of a DNA Database 23.2.3 Data Protection 23.2.4 Quality Management 23.2.5 Resources 23.3 Volume of Databases Worldwide 23.3.1 National Databases 23.3.2 Interpol DNA Database 23.3.3 Database Efficiency 23.4 Sharing DNA Data across Borders 23.5 Ethical Aspects of Forensic DNA Databases 23.5.1 European Court of Human Rights Decision in UK Cases and North Macedonia Case 23.5.2 United States Supreme Court in Maryland v. King, 569 U.S. 435 (2013) 23.6 Quo Vadis Forensic DNA Database 23.6.1 Mitochondrial DNA 23.6.2 Y-Chromosomal STR Markers 23.6.3 Missing Persons References Index