دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فیزیک ویرایش: نویسندگان: Akarsh Verma, Sanjay Mavinkere Rangappa, Shigenobu Ogata, Suchart Siengchin سری: Lecture Notes in Applied and Computational Mechanics, 99) ISBN (شابک) : 9811930910, 9789811930911 ناشر: Springer سال نشر: 2022 تعداد صفحات: 395 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Forcefields for Atomistic-Scale Simulations: Materials and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میدانهای نیرو برای شبیهسازیهای مقیاس اتمی: مواد و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب میدانهای نیرو/پتانسیل بین اتمی را توصیف میکند که در مقیاس اتمی و شبیهسازی دینامیک مولکولی استفاده میشوند. مکانیسمها، ویژگیهای برجسته، فرمولبندیها، جنبههای مهم و مطالعات موردی میدانهای نیروی مختلف مورد استفاده برای توصیف مواد مختلف (مانند مواد هستهای و نانومواد) و کاربردها را پوشش میدهد. این کتاب به دانشجویان و محققانی که در حال مطالعه پتانسیلهای فورسفیلد هستند کمک زیادی میکند و کاربردهای مختلف شبیهسازی در مقیاس اتمی را به اساتیدی که در حال تحقیق در مورد دینامیک مولکولی هستند، معرفی میکند.
This book describes the forcefields/interatomic potentials that are used in the atomistic-scale and molecular dynamics simulations. It covers mechanisms, salient features, formulations, important aspects and case studies of various forcefields utilized for characterizing various materials (such as nuclear materials and nanomaterials) and applications. This book gives many help to students and researchers who are studying the forcefield potentials and introduces various applications of atomistic-scale simulations to professors who are researching molecular dynamics.
Contents Introduction to Molecular Dynamics Simulations 1 Introduction 2 Interatomic Potential or Force Field 3 Numerical Integration: Finding Trajectories 4 Time Step 5 Cut-off Radius Distance 6 Temperature Control 7 Ensembles 8 Boundary Conditions 9 Energy Minimization 10 MD Algorithm 11 Limitations of MD 12 Applications References Introduction to Interatomic Potentials/Forcefields 1 Potentials 1.1 Introduction 1.2 Cluster Potentials 1.3 Pair Potentials 1.4 Tersoff Potentials 1.5 Potentials for Ionic Solids 1.6 Reactive Force Field Potentials 2 Types of Materials and Their Potential Models References Current Perspective on Atomistic Force Fields of Polymers 1 Introduction 2 Atomistic Force Fields of Polymers 2.1 Basics of Atomistic Force Fields 2.2 Types of Force Fields 2.3 Force Field Parameterization 2.4 Atom Typing and Molecular Topology 2.5 Time and Length Scales 3 Atomistic Simulation Studies of Polymers 4 Multiscale Simulations of Polymers 5 Summary and Future Perspectives References Forcefields and Modeling of Polymer Coatings and Nanocomposites 1 Introduction 2 Forcefields (FFs) and MD Simulations 2.1 Intramolecular Terms 2.2 Intermolecular Terms 3 Popular Forcefields Used in Modeling and Simulation of Different Coating Composites 3.1 Non-Reactive Forcefields 3.2 Reactive Forcefields 4 Case Studies 4.1 Computational Studies in Coating Application 4.2 Computational Studies in Nanocomposite-Based Materials 4.3 Poly (Ethylene) (PE)-Based Nanocomposites 4.4 Coiled Carbon Nanotube-Reinforced Nanocomposites 4.5 Computational Studies on Graphene-Based Nanocomposites 5 Comparison of Estimated Results of Nanocomposites Using Different Forcefields 6 Conclusion References Development, Availability, and Applications of EAM Potentials for Characterization of Complex HCP Materials 1 Introduction 2 Embedded Atom Method (EAM) Potential 2.1 Development of EAM Potentials for HCP Materials 3 Application of EAM Potentials—MD Simulations to Predict Properties of HCP Materials 3.1 Yield Behaviour of Single Crystals 3.2 Dislocations and Generalized Stacking Fault Energy in HCP Materials—MD-Based Studies 3.3 MD Simulations to Generate and Investigate Bicrystalline and Polycrystalline HCP Metals 3.4 Fracture Properties Single Crystals, Bicrystalline, and Polycrystalline HCP Metals Using MD-Based Simulations 3.5 MD-Based Simulations to Study Point Defects Formation and Migration in HCP Metals References EAM Potentials for Characterisation of HCP Nuclear Materials 1 Introduction 2 Application of EAM Potentials for Irradiation Studies in HCP Materials 3 Conclusion References EAM Inter-Atomic Potential—Its Implication on Nickel, Copper, and Aluminum (and Their Alloys) 1 Introduction 2 Embedded Atom Model 2.1 Basics 3 Applications 4 Bulk Properties 4.1 Phonons 4.2 Thermodynamic Properties 4.3 Liquids 4.4 Defects 5 Grain Boundaries 5.1 Structure 5.2 Thermal Effects 5.3 Many-Body Interaction 5.4 Elastic Properties 6 Surfaces 7 Alloys 7.1 Surface Segregation in Dilute Limit 7.2 Ni-Cu Alloy 7.3 Compositional Ordering 7.4 Segregation at Strain Field 8 Mechanical Properties 8.1 Dislocation 8.2 Fracture 9 Conclusion and Future Perspective References Defect Energy Calculations of Nickel, Copper and Aluminium (and Their Alloys): Molecular Dynamics Approach 1 Introduction 1.1 Stacking Fault Energy 1.2 Vacancy Formation Energy 1.3 Interstitial Formation Energy 2 Nickel 2.1 Stacking Fault Energy 2.2 Vacancy Formation Energy 2.3 Interstitial Formation Energy 3 Copper 3.1 Stacking Fault Energy 3.2 Vacancy Formation Energy 3.3 Interstitial Formation Energy 4 Aluminium 4.1 Stacking Fault Energy 4.2 Vacancy Formation Energy 4.3 Interstitial Formation Energy 5 Nickel–Copper Alloys 5.1 Stacking Fault Energy 5.2 Vacancy Formation Energy 6 Aluminium–Copper Alloys 6.1 Stacking Fault Energy 6.2 Vacancy Formation Energy 7 Nickel–Aluminium Alloys 7.1 Stacking Fault Energy 7.2 Vacancy Formation Energy 8 Conclusion References Tersoff and REBO Potentials 1 Introduction 2 Tersoff Potential 3 Applications 4 Mechanical Properties 4.1 Defects 5 Thermal Properties 6 REBO Potential 7 Abell–Tersoff Bond Order Potentials 8 Analytic Bond Order Form 9 Applications 10 Mechanical Properties 11 Thermal Properties 12 Conclusion and Future Perspective References Reactive Forcefield (ReaxFF): Application to Predict 2D Nanomaterials Synthesis 1 Introduction 2 Reactive Force Field (ReaxFF) 3 Applications of ReaxFF for the Synthesis of 2D Nanomaterials 3.1 Bulk Growth 3.2 Defect and Growth of Nanomaterials Using ReaxFF 4 Conclusion and Future Perspective References Reinforcing Potential of 2D Nanofiller in Polyethylene: A Molecular Dynamics Approach 1 Introduction 2 Modeling of Nanocomposites Using MD Approach 2.1 Force Field Potentials for Bonded and Non-bonded Interaction in Polymer Nanocomposites 3 Mechanical Response of 2D Reinforced Polymer Nanocomposites 3.1 Graphene-Based Polyethylene Nanocomposites 3.2 Hexagonal Boron Nitride-Based Polyethylene Nanocomposites 4 Conclusions References Atomistic Simulations to Study Thermal Effects and Strain Rate on Mechanical and Fracture Properties of Graphene like BC3 1 Introduction 2 Simulation Details and Modeling 3 Results and Discussion 3.1 Mechanical Properties of BC3 3.2 Fracture Properties of BC3 3.3 Thermal Effects on Fracture Toughness 3.4 STW Defects in BC3 4 Conclusions References Computational Modelling of Deformation and Failure of Bone at Molecular Scale 1 Introduction 2 Hierarchical Structure of Bone 3 Molecular Mechanics of Bone Under Different States 3.1 Mineralisation 3.2 Effect of Hydration 3.3 Cross-Linking 3.4 Viscoelasticity and Deformation Rate 3.5 Interfaces Within Bone 4 Bone Diseases and Disorders 4.1 Osteogenesis Imperfecta 4.2 Osteoporosis 4.3 Type 2 Diabetes (T2D) 4.4 Aging 4.5 Collagen Denaturation 5 Collagen Inspired Bio-composites 6 Conclusion and Future Perspectives References A Review on the Deformation Mechanism of Soft Tissue Collagen Molecules: An Atomistic Scale Experimental and Simulation Approaches 1 Introduction 1.1 Common Structure of Soft Tissue 1.2 Structure of Tropocollagen 1.3 Collagen Cross Link and Their Role in Mechanical Response of Tissue. 2 Different Types of Mechanical Response of the Tissue Associated with Nanoscale and Molecular Level 2.1 Elastic Response 2.2 Viscoelastic Properties 2.3 Poroelastic Property 3 Collagen Structural Mutation Related Changes in Mechanical Properties of Tissue 4 Deformation Mechanism of the Lower Hierarchy of the Soft Tissue 5 Experimental Approach to Investigate the Nano and Molecular Structure of Tissues 5.1 Nano Mechanical Analysis for Various Soft and Hard Tissue (Atomic Force Microscopic) 5.2 Raman Spectroscopy 5.3 ATR-Ftir 5.4 Fluorescently Labeled Collagen Hybridizing Peptide (F-CHP) 6 Molecular Dynamics-Based Simulation to Predict the Molecular Level Mechanical Response of the Tissue 6.1 Quasistatic and Dynamic Simulation 6.2 Viscoelastic Simulation Using Molecular Dynamics 7 Conclusion References Introduction to Materials Studio Software for the Atomistic-Scale Simulations 1 Introduction 2 Modules and Their Applications 2.1 Materials Visualizer 2.2 Amorphous Cell 2.3 Powder Solve 2.4 Polymorph Predictor 3 Widely Used Forcefields Under Materials Studio (MS) Software 3.1 COMPASS 3.2 COMPASS II 3.3 Universal 3.4 CVFF 3.5 PCFF 3.6 Comparative Study of Forcefields 4 Conclusion References Data-Driven Phase Selection, Property Prediction and Force-Field Development in Multi-Principal Element Alloys 1 Introduction 2 Machine Learning for Materials Science 2.1 Materials Informatics 2.2 Databases 2.3 Feature Creation and Selection 2.4 Machine Learning Algorithms 3 Data-Driven Models for MPEAs 3.1 Phase Selection 3.2 Mechanical Properties 3.3 Ordering Behaviour 4 Atomistic Potential Development 4.1 Classical Methods 4.2 Machine Learning Enabled Potential Development 5 Conclusions and Future Perspectives Appendix 1 References Effect of Geometrical Parameters on Branched Cracks: A Finite Element Method-Based Computational Approach 1 Introduction 2 Review of Literature 2.1 Evaluation of Stress Intensity Factor 2.2 Evaluation of Crack Branching 2.3 Evaluation of T-Stress 3 Materials and Methods 3.1 Material 3.2 Stress Intensity Factor 3.3 Specimen Geometry 3.4 Method 3.5 Numerical Approach of T-stress Analysis 3.6 Crack Analysis 3.7 General Postprocessor 4 Results and Discussion 4.1 Validation 4.2 Branched Crack 4.3 Effect of Crack Inclination Angle (α) on SIF and T-Stress 4.4 Effect of Biaxial Load Factor (β) on SIF and T-Stress 4.5 Effect of Crack Length Ratio (a1/a2) on SIF and T-Stress 4.6 Von Mises Distribution 5 Conclusions 6 Future Aspects References