دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Somayeh Asadi (editor). Behnam Mohammadi-Ivatloo (editor)
سری:
ISBN (شابک) : 3030400514, 9783030400514
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 358
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Food-Energy-Water Nexus Resilience and Sustainable Development: Decision-Making Methods, Planning, and Trade-Off Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انعطاف پذیری و توسعه پایدار پیوند غذا-انرژی-آب: روش های تصمیم گیری، برنامه ریزی و تجزیه و تحلیل مبادله نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Chapter 1: A Multi-attribute Assessment of Electricity Supply Options in Lebanon 1.1 Introduction 1.2 Method and Data 1.2.1 Weights Assigned to REA´s Indicators 1.2.2 Weights Assigned to SPA´s Indicators 1.3 Results 1.3.1 Aggregate Performance of Electricity Generation Technologies Under the REA Framework 1.3.2 Aggregate Performance of Electricity Generation Technologies Under the SPA Framework 1.4 Discussion 1.4.1 Variations Between API Scores Under the REA and SPA Frameworks 1.4.2 Limitations 1.5 Conclusion References Chapter 2: Introduction to FEW Nexus 2.1 Introduction to FEW Nexus 2.2 Water 2.3 Food 2.4 Energy 2.5 Energy and Water 2.5.1 Energy for Water 2.5.2 Water for Energy 2.5.2.1 Water for the Fuel Cycle 2.5.2.2 Energy Conversion 2.6 Water-Food 2.6.1 Food for Water 2.7 Food and Energy 2.7.1 Energy for Food 2.7.2 Food for Energy 2.8 Spatial Computing in FEW 2.8.1 FEW Data Mining 2.8.2 FEW Decision Support 2.9 Solutions for FEW Nexus Management and Improvement 2.9.1 Operationalizing the Planning for FEW Nexus 2.9.2 Opportunities to Improve Food, Energy, and Water Security via Nexus References Chapter 3: A Decision Support Tool for the Assessment of Water-Energy-Food Nexus in Saudi Arabia 3.1 Introduction 3.2 Tool Design and Development 3.3 Land Suitability Classification 3.4 The Decision Support Tool at a Glance 3.4.1 Scenarios and Feeding Input Data 3.5 Conclusions Appendix: Land Suitability Analysis References Chapter 4: Design of Integrated Palm Oil Based Complex via Food-Energy-Water Nexus Optimization Framework 4.1 Introduction 4.2 Problem Statement 4.3 Problem Formulation 4.4 Case Study 4.5 Results and Discussion 4.5.1 Maximizing Economic Potential (Scenario 1) 4.5.2 Maximizing Food Production (Scenario 2) and Minimizing Freshwater Consumption (Scenario 5) 4.5.3 Maximizing Electricity Generation (Scenario 3) and Minimizing Net Heat Demand (Scenario 4) 4.5.4 Maximizing Overall Degree of Satisfaction (Scenario 6) 4.6 Conclusion References Chapter 5: Potable Water Production by Heat Recovery of Kalina Cycle, Using Solar Energy 5.1 Introduction 5.2 Set-Up Description 5.3 Materials and Methods 5.3.1 CPC and Thermal Storage Tank Formulae 5.3.2 Thermodynamic Presumptions and Evaluation 5.3.3 Main Performance Criteria 5.4 Results and Discussion 5.5 Concluding Comments References Chapter 6: Biodiesel: A Sustainable Energy Source for Compression Ignition Engine 6.1 Background Information 6.2 Vegetable Oils 6.3 Biodiesel 6.3.1 Biodiesel Properties 6.3.2 Advantages of Biodiesel 6.3.3 Disadvantages of Biodiesel 6.4 Engine Test 6.5 Effect of Biodiesel on Engine Performance 6.6 NOx Emission Reduction 6.7 Effect of Additive Added Biodiesel 6.8 Biodiesel on Engine Vibration and Corrosion 6.8.1 Effect of Biodiesel on Engine Lubrication 6.8.2 Effect of Biodiesel on Engine Components 6.9 Future Challenges 6.10 Further Reading 6.11 Conclusions References Chapter 7: Net-Zero Energy Buildings: Modeling, Real-Time Operation, and Protection 7.1 Introduction 7.2 nZEB Concept 7.2.1 nZEB Components 7.2.1.1 Renewable Energy Resources 7.2.1.1.1 Solar Panel 7.2.1.1.2 Wind Turbine 7.2.1.1.3 Biomass 7.2.1.1.4 Geothermal 7.2.1.2 Home Energy Storage 7.2.1.3 Building Load 7.2.2 Potential Impacts of Considering Uncertainties into the Models 7.3 Different Modeling Techniques by Incorporating Uncertainties 7.3.1 Data-Driven Methods 7.3.1.1 Artificial Neural Networks 7.3.1.1.1 MLP Neural Network 7.3.1.1.2 RNN Architecture 7.3.1.1.3 CNN Architecture 7.3.1.2 Fuzzy Inference System 7.3.1.3 ANFIS 7.3.1.4 Markov Chain 7.3.1.5 EV Conditional Probability Distribution at Plug-in Time 7.3.2 Mathematical Model 7.3.2.1 Simple Panel Efficiency Model (Simple Model) 7.3.2.2 Power Temperature Coefficient Model 7.3.2.3 PVWatt Model 7.3.2.4 Sandia PV Array Performance Model (Sandia) 7.4 Stochastic Control Strategies 7.4.1 Stochastic Dynamic Programming 7.4.2 Online Scheduling Approaches 7.4.3 Model Predictive Control 7.5 Protection Methods 7.5.1 Protection Challenges on Net-Zero Energy Buildings 7.5.2 Evaluating Different Protection Methods of Net-Zero Energy Buildings 7.5.3 Grounding and Human Safety in Net-Zero Energy Buildings 7.6 Conclusion References Chapter 8: Data Analysis Model for Solar Energy System Design in Different Climatic Regions 8.1 Introduction 8.2 Solar, Electricity, and Climate Potential in Istanbul and Izmir 8.2.1 Calculation of Intensity of Solar Radiation 8.2.2 Horizontal Area 8.2.2.1 Total Daily Sun Irradiation 8.2.2.2 Daily Sun Irradiation Diffusion 8.2.2.3 Total Instantaneous Solar Radiation 8.2.2.4 Diffuse and Direct Momentary Sun Irradiation 8.2.3 The Sun Irradiation Intensity´s Determination on Inclined Superficies 8.2.3.1 Direct Sun Irradiation as the Momentary 8.2.3.2 The Diffusion of Solar Radiation (Momentary) 8.2.3.3 Reflecting Sun Irradiation (Momentary) 8.2.3.4 Total Sun Irradiation (Momentary) 8.3 Method 8.4 Results and Findings 8.5 Conclusions References Chapter 9: The Necessity of a Food-Energy-Water Nexus Approach for Lake Urmia Basin Under the Risks of Climate Change and Envi... 9.1 Introduction 9.2 Climate Change Impact on Iran 9.3 Environmental Crisis in the Lake Urmia Basin 9.4 Interactions Among FEW Actors at the Lake Urmia Basin 9.4.1 Water for Energy 9.4.2 Water for Energy 9.4.3 Energy for Water 9.4.4 Energy for Food 9.4.5 Energy for Water 9.5 Conclusion References Chapter 10: Enabling Technology for Water Smart Agriculture: A Test Bed for Water and Energy Efficiency for Developing Nations 10.1 Introduction 10.1.1 Socioeconomic Impact of Water Crisis 10.1.2 Review of Existing Solutions for Water Efficiency 10.2 The Enabling Technology 10.2.1 Real-Time Soil Moisture Measurement Methods 10.2.1.1 Principles of Soil Moisture Measurement Techniques 10.2.1.1.1 Soil Moisture Tension Method 10.2.1.1.2 Resistive Method 10.2.1.1.3 Capacitive Method 10.2.1.1.4 Time-Domain Reflectometry (TDR) 10.2.1.1.5 Frequency-Domain Reflectometry (FDR) 10.2.1.1.6 Neutron Scattering Method 10.2.1.2 The Low-Cost Solution 10.2.2 Energy-Efficient Communication for Wireless Sensor Network (WSN) 10.2.2.1 The Low Cost and Low Energy Solution 10.2.3 Energy Harvesting for Stand-Alone Sensor Nodes and Gateway 10.2.4 Integrating Weather Information 10.2.5 Internet of Things (IoT) and Cloud Computing 10.3 The Proposed Framework 10.4 Conclusion References Chapter 11: Dealing with Trade-offs in Sustainable Energy Planning: Insight for Indonesia 11.1 Introduction 11.2 Method 11.3 Results 11.3.1 Country-Specific Weighting of Energy Alternatives 11.3.2 Island-Specific Desirability Energy Alternatives 11.3.2.1 Nuclear 11.3.2.2 Geothermal 11.3.2.3 Solar Photovoltaic 11.3.2.4 Wind 11.3.2.5 Fossil Fuels 11.3.2.6 Hydropower 11.3.2.7 Bioenergy 11.4 Policy Implications 11.5 Conclusions References Chapter 12: An Updated Review on Net-Zero Energy and Water Buildings: Design and Operation 12.1 Introduction 12.2 Definition of Net-Zero Building 12.2.1 Net-Zero Energy Building 12.2.1.1 Design of ZEBs 12.2.1.2 Application of Renewable Energy Sources in ZEBs 12.2.1.3 Operation of ZEBs 12.2.2 Net-Zero Water Buildings 12.2.2.1 Design of ZWBs 12.2.2.2 Operation of ZWBs 12.3 Discussion and Conclusion References Chapter 13: Food, Water and Energy Nexus a Pulpit for Implementing the Sustainable Future 13.1 Introduction 13.2 Food Waste 13.3 Food Waste Management 13.3.1 Water Crisis 13.3.2 Food Crisis 13.3.3 Energy Crisis 13.4 Water, Food and Energy Interdependencies 13.5 Remedies for Food, Energy and Water Problems 13.5.1 Administration to Oversee Water Usage 13.5.2 The Worldwide Population and Water Supply 13.5.3 Water Reuse 13.6 Virtual Water 13.6.1 Global Guidelines on Sanitation and Quality 13.6.2 Open and Private Benchmarks to Defeat Wastage 13.6.3 Eurep-GAP 13.6.4 Control the Microorganisms 13.7 Remedies for the Energy Crisis 13.7.1 Wind Energy 13.7.2 Nuclear Energy 13.7.3 Solar Energy 13.8 Conclusion References Chapter 14: Security Interactions of Food, Water, and Energy Systems: A Stochastic Modeling 14.1 Introduction 14.2 Modeling 14.3 Data 14.4 Numerical Results 14.5 Conclusion References Chapter 15: Beyond Carbon Emissions: A System of Systems Approach to Sustainable Energy Development in East Africa 15.1 Introduction 15.2 East Africa 15.2.1 Background 15.2.2 Energy Landscape and East African Power Pool (EAPP) 15.2.3 Energy Planning Across East Africa 15.2.3.1 Least Cost Energy Planning 15.2.3.2 Renewable Energy Plans 15.3 Method 15.4 Results 15.4.1 Relative Desirability of Energy Sources 15.4.2 Geothermal 15.4.3 Solar 15.4.3.1 Solar PV 15.4.3.2 Concentrated Solar Power 15.4.4 Onshore Wind 15.4.5 Nuclear 15.4.6 Hydropower 15.4.7 Coal 15.4.8 Oil 15.4.9 Natural Gas 15.4.10 Biomass 15.5 East African Power Pool, EAPP (Regional Weights) 15.6 The EAPP Master Plan 15.7 Conclusion References Index