دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Cedric Leblond. Jean-François Sigrist
سری: Mechanics: Numerical Methods in Mechanics
ISBN (شابک) : 1789450780, 9781789450781
ناشر: Wiley-ISTE
سال نشر: 2022
تعداد صفحات: 398
[400]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 30 Mb
در صورت تبدیل فایل کتاب Fluid-structure Interaction: Numerical Simulation Techniques for Naval Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برهمکنش سیال-ساختار: تکنیک های شبیه سازی عددی برای کاربردهای دریایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک نمای کلی از شبیهسازی عددی برهمکنش سیال-ساختار (FSI) برای کاربرد در مهندسی دریایی ارائه میکند. کنش متقابل سیال-ساختار طیف وسیعی از روشهای مدلسازی (عددی، نیمه تحلیلی، تجربی)، روشهای محاسبه (عنصر محدود، عنصر مرزی، حجم محدود، روش بولتزمن شبکه) و روشهای عددی (مدلهای مرتبه کاهشیافته و استراتژی جفتسازی، از جمله موارد دیگر) را شرح میدهد. ). این کتاب توسط گروهی از کارشناسان و محققان بخش دریایی نوشته شده است، این کتاب برای کسانی در نظر گرفته شده است که درگیر تحقیق یا طراحی هستند و به دنبال به دست آوردن تصویری کلی از هیدرودینامیک، دریاداری و عملکرد تحت بارهای شدید، نویز و ارتعاش هستند. با استفاده از یک رویکرد مختصر و آموزشی، این کتاب روشهایی را شرح میدهد که در آن شبیهسازی عددی به مدلسازی و درک تعامل سیال-ساختار برای طراحی و بهینهسازی کشتیهای آینده کمک میکند.
This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.
Cover Title Page Copyright Page Contents Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty Preface: Fluid–Structure Interactions in Naval Engineering Acknowledgments Chapter 1. A Brief History of Naval Hydrodynamics 1.1. The emergence of a new science 1.2. Perfecting the theory 1.2.1. Fluids, viscosity and turbulence 1.2.2. Potential theories 1.2.3. Waves 1.3. Ship theory 1.3.1. Stability 1.3.2. Resistance to forward motion 1.3.3. Roll, pitch and seakeeping 1.3.4. Propeller and cavitation 1.4. The numerical revolution 1.5. References Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the “Low frequency” Range 2.1. The acoustic signature of maritime platforms 2.2. Vibro-acoustic models 2.2.1. Vibro-acoustics without dissipative effects 2.2.2. Dissipation of energy in a fluid 2.2.3. Dissipation of energy in materials 2.3. Calculating the frequency response 2.3.1. Numerical model, vibro-acoustic equation 2.3.2. Direct and modal methods 2.4. Improving the predictive character of simulations 2.4.1. The medium- and high-frequency domains 2.4.2. Uncertainty propagation and parametric dependency 2.5. References Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures 3.1. Noise and vibration of a submerged structure 3.1.1. Why vibro-acoustics? 3.1.2. From the real-world problem to the physical model 3.2. Solving the vibro-acoustic problem 3.2.1. Substructuring approach 3.2.2. Point admittance method 3.2.3. Condensed transfer function method 3.2.4. Examples of condensation functions 3.2.5. Spectral theory of cylindrical shells 3.2.6. FEM calculation for internal structures 3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell 3.3.1. The influence of heavy fluid 3.3.2. Vibration behavior of the cylindrical shell 3.3.3. The influence of stiffeners 3.3.4. Influence of non-axisymmetric internal structures 3.4. Conclusion 3.5. References Chapter 4. “Advanced” Methods for the Vibro-acoustic Response of Naval Structures 4.1. On reducing computing time 4.2. Parametric reduced-order models in the harmonic regime 4.2.1. Bibliographical elements. 4.2.2. Standard construction of the parametric reduced-order model 4.2.3. Constructing a goal-oriented parametric reduced-order model 4.3. Parametric reduced-order models in the time domain 4.3.1. Motivation 4.3.2. On the stability of full vibro-acoustic models 4.3.3. Construction of stable reduced-order models 4.3.4. Offline construction of the reduced-basis 4.3.5. Illustration of the temporal approach 4.4. Conclusion 4.5. References Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods 5.1. Model reduction 5.2. Proper orthogonal decomposition 5.2.1. Calculation of the reduced basis POD 5.2.2. Using POD in fluid–structure interaction 5.2.3. Sensitivity to parameters and interpolation of POD bases 5.3. Lattice Boltzmann method 5.3.1. History 5.3.2. MRT/BGK 5.3.3. Real parameters/LBM parameters 5.4. LBM and FSI 5.4.1. Boundary conditions in the LBM 5.4.2. Immersed boundary method 5.5. Conclusion 5.6. References Chapter 6. Dynamic Behavior of Tube Bundles with Fluid–Structure Interaction 6.1. Introduction 6.1.1. Tube bundles in the nuclear industry 6.1.2. Tube bundles, industrial problems 6.1.3. Modeling FSI in exchangers 6.2. Physical models and equations 6.2.1. Fluid–structure interaction with Euler equations 6.2.2. Numerical methods for Euler equations with FSI 6.2.3. Homogenization in the case of tube bundles 6.2.4. Numerical methods for homogenization 6.2.5. Euler equations, Rayleigh damping 6.2.6. Homogenization, Rayleigh damping 6.2.7. Implementing the homogenization method 6.3. Validation and illustration of the homogenization method 6.3.1. Vibrational eigenmodes 6.3.2. Rayleigh damping: direct and homogenization methods 6.4. Homogenization methods for Navier–Stokes equations 6.5. Applications 6.5.1. Dynamic behavior of RNR-Na cores 6.5.2. Onboard steam generator 6.6. Conclusion 6.7. References Chapter 7. Calculating Turbulent Pressure Spectra 7.1. Vibrations caused by turbulent flow 7.2. Characteristics of the wall pressure spectrum 7.2.1. Turbulent boundary layer without a pressure gradient 7.2.2. Flow with a pressure gradient 7.3. Empirical models 7.3.1. Corcos model 7.3.2. Chase models 7.3.3. Smol’yakov model 7.3.4. Goody’s model 7.3.5. Rozenberg model 7.3.6. Model comparison 7.4. Solving the Poisson equation for wall pressure fluctuations 7.4.1. Formulations for the TMS part of the wall pressure 7.4.2. Formulations for the TMS and TT parts of the wall pressure 7.5. Conclusion 7.6. References Chapter 8. Calculating Fluid–Structure Interactions Using Co-simulation Techniques 8.1. Introduction 8.2. The physics of fluid–structure interaction 8.2.1. Dimensionless numbers for the fluid flow 8.2.2. Dimensionless numbers for the motion of structures 8.2.3. Dimensionless numbers linked to fluid–structure coupling 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure 8.2.5. Summary of dimensionless numbers and fluid–structure coupling intensity 8.3. Mathematical formulation of the fluid–structure interaction 8.3.1. Mathematical formulation of the fluid problem 8.3.2. Mathematical formulation of the structural problem 8.3.3. Mathematical formulation of interface coupling conditions 8.4. Numerical methods in the dynamics of fluids and structures 8.4.1. Numerical methods in the dynamics of fluids 8.4.2. Numerical methods in structural dynamics 8.4.3. Arbitrary Lagrange–Euler (ALE) formulation and moving meshes 8.5. Numerical solution of the fluid–structure interaction 8.5.1. Software strategy 8.5.2. Time coupling methods in the case of partitioning approaches 8.5.3. Methods of space coupling 8.5.4. The added mass effect 8.6. Examples of applications to naval hydrodynamics 8.6.1. Foils in composite materials 8.6.2. Hydrodynamics of hulls 8.7. Conclusion: Which method for which physics? 8.8. References Chapter 9. The Seakeeping of Ships 9.1. Why predict ships’ seakeeping ability? 9.1.1. Guaranteeing structural reliability 9.1.2. Guaranteeing a ship’s safety at sea 9.1.3. Predicting operability domains 9.1.4. Improving operability 9.1.5. Getting to know the environment and how the ship disrupts it 9.1.6. The particular case of multibodies 9.1.7. Knowing average or low-frequency forces resulting from swell 9.2. Waves 9.2.1. Origin, nature and description of waves 9.2.2. Monochromatic swell 9.2.3. Irregular swell 9.2.4. Complete nonlinear wave modeling 9.2.5. Considering a ship’s forward speed 9.3. The hydromechanical linear frequency solution 9.3.1. Hypotheses and general formulation 9.3.2. Response on regular swell 9.3.3. Response on irregular swell 9.4. Nonlinear time solution based on force models 9.4.1. Principles of the method 9.4.2. Results 9.4.3. Tools: uses and limitations 9.5. Complete solution of the Navier‒Stokes equations 9.5.1. Method 9.5.2. Applications to the problem of seakeeping 9.6. Conclusion 9.7. References Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures 10.1. Underwater explosions 10.1.1. Characterizing the threat 10.1.2. Calculating the flow 10.1.3. Semi-analytical models for the response of submerged structures 10.2. Semi-analytical models for the motion of a rigid hull 10.2.1. Local motion of a rigid hull with or without equipment 10.2.2. Overall motion of a rigid hull with or without equipment 10.3. Semi-analytical models of the motion of a deformable hull 10.3.1. Shock signal on a deformable hull alone 10.3.2. Correction of the rigid body motion 10.3.3. Device rigidly mounted on the hull 10.3.4. Simplified representation of hull stiffeners 10.4. Notes on implementing models 10.5. Conclusion 10.6. References Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads 11.1. The behavior of composite materials 11.1.1. Orthotropic linear elastic behavior 11.1.2. Non-elastic behavior 11.1.3. Strain rate dependency 11.2. Underwater explosions 11.2.1. Categorizing phenomena 11.2.2. Analytical formulations and simple experiments 11.2.3. Numerical methods 11.3. Slamming: phenomenon and formulation 11.4. Conclusion 11.5. References List of Authors Index EULA