دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 نویسندگان: Yunus A. Cengel Dr., John M. Cimbala سری: ISBN (شابک) : 0073380326, 9780073380322 ناشر: McGraw-Hill Education سال نشر: 2013 تعداد صفحات: 1031 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
کلمات کلیدی مربوط به کتاب مبانی مکانیک سیالات و برنامه های کاربردی: هوافضا، آیرودینامیک، طراحی و ساخت هواپیما، فضانوردی و پرواز فضایی، اویونیک، دینامیک گاز، فناوری نیروی محرکه، مهندسی، مهندسی و حمل و نقل، مواد شیمیایی، پوششها، سرامیک و شیشه، لوازم آرایشی، دینامیک سیالات، طراحی کارخانه و حمل و نقل، پلاستیک پدیده ها، مهندسی، مهندسی و حمل و نقل، علم مواد، علم مواد و مواد، مهندسی، مهندسی و حمل و نقل، مکانیک، نقشه کشی و نقشه کشی مکانیکی، دینامیک سیالات، مکانیک شکست، هیدرولیک
در صورت تبدیل فایل کتاب Fluid Mechanics Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مکانیک سیالات و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول و کاربردهای مکانیک سیالات Cengel و Cimbala، مستقیماً با مهندسان فردا به روشی ساده و در عین حال دقیق ارتباط برقرار می کند. این متن اصول و معادلات اساسی مکانیک سیالات را در زمینه مثالهای متعدد و متنوع مهندسی در دنیای واقعی پوشش میدهد. این متن به دانشآموزان کمک میکند تا با تأکید بر فیزیک، استفاده از شکلها، عکسهای متعدد و وسایل کمک بصری برای تقویت فیزیک، درک شهودی از مکانیک سیالات ایجاد کنند. رویکرد بسیار بصری یادگیری مکانیک سیالات را توسط دانش آموزان افزایش می دهد. این متن از طریق نحوه ارائه مطالب خود را از سایرین متمایز می کند - به ترتیبی پیش رونده از ساده به دشوارتر، که هر فصل را بر اساس پایه های ذکر شده در فصل های قبلی بنا می کند. به این ترتیب، حتی جنبه های سنتی چالش برانگیز مکانیک سیالات را می توان به طور موثر یاد گرفت. McGraw-Hill's Connect نیز به عنوان یک آیتم اختیاری در دسترس است. Connect تنها سیستم یادگیری یکپارچه ای است که دانش آموزان را با تطبیق مستمر برای ارائه دقیق آنچه که نیاز دارند، زمانی که به آن نیاز دارند، چگونه به آن نیاز دارند، توانمند می کند تا زمان کلاس موثرتر باشد. اتصال به استاد این امکان را می دهد که تکالیف، آزمون ها و تست ها را به راحتی تعیین کند و به طور خودکار نمرات کار دانش آموز را نمره گذاری و ثبت کند. مشکلات برای جلوگیری از اشتراکگذاری پاسخها تصادفیسازی میشوند و ممکن است یک «راهحل چند مرحلهای» نیز داشته باشند که به پیشرفت یادگیری دانشآموزان در صورت بروز مشکل کمک میکند.
Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
Cover S Title FLUID MECHANICS: FUNDAMENTALS AND APPLICATIONS, THIRD EDITION Copyright © 2014 by The McGraw-Hill Companies, Inc ISBN 978-0-07-338032-2 Dedication About the Authors Brief Contents CONTENTS Preface Background Objectives New to the Third Edition Philosophy and Goal Content and Organization Learning Tools Emphasis on Physics Effective Use of Association Self-Instructing Extensive Use of Artwork and Photographs Consistent Color Scheme for Figures Numerous Worked-Out Examples A Wealth of Realistic End-of-Chapter Problems Use of Common Notation A Choice of SI Alone or SI/English Units Combined Coverage of Bernoulli and Energy Equations A Separate Chapter on CFD Application Spotlights Glossary of Fluid Mechanics Terms Conversion Factors Nonmenclature Supplements Text Website Engineering Equation Solver (EES) Acknowledgments Online Resources for Students and Instructors Chapter 1: Introduction and Basic Concepts 1-1 Introduction What Is a Fluid? Application Areas of Fluid Mechanics 1-2 A Brief History of Fluid Mechanics 1-3 The No-Slip Condition 1-4 Classification of Fluid Flows Viscous versus Inviscid Regions or Flow Internal versus External Flow Compressible versus Incompressible Flow Laminar versus Turbulent Flow Natural (or Unforced) versus Forced Flow Steady versus Unsteady Flow One-, Two-, and Three-Dimensional Flows 1-5 System and Control Volume 1-6 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity Conversion Rates 1-7 Modeling in Engineering 1-8 Problem-Solving Technique Step 1: Problem Statement Step 2: Schematic Step 3: Assumptions and Approximations Step 4: Physical Laws Step 5: Properties Step 6: Calculations Step 7: Reasoning, Venficat1on, and Discussion 1-9 Engineering Software Packages Engineering Equation Solver (EES) CFD Software 1-10 Accuracy, Precision, and Significant Digits Summary References and Suggested Reading Application Spotlight: What Nuclear Blasts and Raindrops Have in Common Problems Chapter 2: Properties of Fluids 2-1 Introduction Continuum 2-2 Density and Specific Gravity Density of Ideal Gases 2-3 Vapor Pressure and Cavitation 2-4 Energy and Specific Heats 2-5 Compressibility and Speed of Sound Coefficient of Compressibility Coefficient of Volume Expansion Speed of Sound and Mach Number 2-6 Viscosity 2-7 Surface Tension and Capillary Effect Capillary Effect Summary Application Spotlight: Cavitation References and Suggested Reading Problems Chapter 3: Pressure and Fluid Statics 3-1 Pressure Pressure at a Point Variation of Pressure with Depth 3-2 Pressure Measurement Devices The Barometer The Manometer Other Pressure Measurement Devices 3-3 Introduction to Fluid Statics 3-4 Hydrostatic Forces on Submerged Plane Surfaces Special Case: Submerged Rectangular Plate 3-5 Hydrostatic Forces on Submerged Curved Surfaces 3-6 Buoyancy and Stability Stability of Immersed and Floating Bodies 3-7 Fluids in Rigid-Body Motion Special Case 1: Fluids at Rest Special Case 2: Free Fall of a Fluid Body Acceleration on a Straight Path Rotation in a Cylindrical Container Summary References and Suggested Reading Problems Chapter 4: Fluid Kinematics 4-1 Lagrangian and Eulerian Descriptions Acceleration Field Material Derivative 4-2 Flow Patterns and Flow Visualization Streamlines and Streamtubes Pathlines Streaklines Timelines Refractive Flow Visualization Techniques Surface Flow Visualization Techniques 4-3 Plots of Fluid Flow Data Profile Plots Vector Plots Contour Plots 4-4 Other Kinematic Descriptions Types of Motion or Deformation or Fluid Elements 4-5 Vorticity and Rotationality Comparison of Two Circular Flows 4-6 The Reynolds Transport Theorem Alternate Derivation of the Reynolds Transport Theorem Relationship between Material Derivative and RTT Summary Application Spotlight: Fluidic Actuators References and Suggested Reading Problems Chapter 5: Bernoulli and Energy Equations 5-1 Introduction Conservation of Mass The Linear Momentum Equation Conservation of Energy 5-2 Conservation of Mass Mass and Volume Flow Rates Conservation of Mass Principle Moving or Deforming Control Volumes Mass Balance for Steady-Flow Processes Special Case: Incompressible Flow 5-3 Mechanical Energy and Efficiency 5-4 The Bernoulli Equation Acceleration of a Fluid Particle Derivation of the Bernoulli Equation Force Balance across Streamlines Unsteady, Compressible Flow Static, Dynamic, and Stagnation Pressures Limitations on the Use of the Bernoulli Equation Hydraulic Grade Line (HGL) and Energy Grade Line (EGL) Applications of the Bernoulli Equation 5-5 General Energy Equation Energy Transfer by Heat, Q Energy Transfer by Work, W 5-6 Energy Analysis of Steady Flows Special Case: Incompressible Flow with No Mechanical Work Devices and Negligible Friction Kinetic Energy Correction Facto, a Summary References and Suggested Reading Problems Chapter 6: Momentum Analysis of Flow Systems 6-1 Newton\'s Laws 6-2 Choosing a Control Volume 6-3 Forces Acting on a Control Volume 6-4 The Linear Momentum Equation Special Cases Momentum-Flux Correction Factor ß Steady Flow Flow with No External Forces 6-5 Review of Rotational Motion and Angular Momentum 6-6 The Angular Momentum Equation Special Cases Flow with No External Moments Radial-Flow Devices Application Spotlight: Manta Ray Swimming Summary References and Suggested Reading Problems Chapter 7: Dimensional Analysis and Modeling 7-1 Dimensions and Units 7-2 Dimensional Homogeneity Nondimensionalization of Equations 7-3 Dimensional Analysis and Similarity 7-4 The Method of Repeating Variables and The Buckingham Pi Theorem Historical Spotlight: Persons Honored by Nondimensional Parameters 7-5 Experimental Testing, Modeling, and Incomplete Similarity Setup of an Experiment and Correlation of Experimental Data Incomplete Similarity Wind Tunnel Testing Flows with Free Surfaces Application Spotlight: How a Fly Flies Summary References and Suggested Reading Problems Chapter 8: Internal Flow 8-1 Introduction 8-2 Laminar and Turbulent Flows Reynolds Number 8-3 The Entrance Region Entry Lengths 8-4 Laminar Flow in Pipes Pressure Drop and Head Loss Effect of Gravity on Velocity and Flow Rate in Laminar Flow Laminar Flow in Noncircular Pipes 8-5 Turbulent Flow in Pipes Turbulent Shear Stress Turbulent Velocity Profile The Moody Chart and the Colebrook Equation Types of Fluid Flow Problems 8-6 Minor Losses 8-7 Piping Networks and Pump Selection Series and Parallel Pipes Piping Systems with Pumps and Turbines 8-8 Flow Rate and Velocity Measurement Pitot and Pitot-Static Probes Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters Positive Displacement Flowmeters Turbine Flowmeters Variable-Area Flowmeters (Rota meters) Ultrasonic Flowmeters Electromagnetic Flowmeters Vortex Flowmeters Thermal (Hot-Wire and Hot-Film) Anemometers Laser Doppler Velocimetry Particle Image Velocimetry Introduction to Biofluid Mechanics Application Spotlight: PIV Applied to Cardiac Flow Summary References and Suggested Reading Problems Chapter 9: Differential Analysis of Fluid Flow 9-1 Introduction 9-2 Conservation of Mass — The Continuity Equation Derivation Using the Divergence Theorem Derivation Using an Infinitesimal Control Volume Alternative Form of the Continuity Equation Continuity Equation in Cylindrical Coordinates Special Cases of the Continuity Equation 9-3 The Stream Function The Stream Function in Cartesian Coordinates The Stream Function in Cylindrical Coordinates The Compressible Stream Function 9-4 The Differential Linear Momentum Equation — Cauchy\'s Equation Derivation Using the Divergence Theorem Derivation Using an Infinitesimal Control Volume Alternative Form of Cauchy\'s Equation Derivation Using Newton\'s Second Law 9-5 The Navier-Stokes Equation Introduction Newtonian versus Non-Newtonian Fluids Derivation of the Navier-stokes Equation for Incompressible, Isothermal Flow Continuity and Navier-stokes Equations in Cartesian Coordinates Continuity and Navier-stokes Equations in Cylindrical Coordinates 9-6 Differential Analysis of Fluid Flow Problems Calculation of the Pressure Field for a Known Velocity Field Exact Solutions of the Continuity and Navier-stokes Equations Differential Analysis of Biofluid Mechanics Flows Application Spotlight: The No-Slip Boundary Condition Summary References and Suggested Reading Problems Chapter 10: Approximate Solutions of the Navier-Stokes Equation 10-1 Introduction 10-2 Nondimensionalized Equations of Motion 10-3 The Creeping Flow Approximation Drag on a Sphere in Creeping Flow 10-4 Approximation for Inviscid Regions of Flow Derivation of the Bernoulli Equation in Inviscid Regions of Flow 10-5 The Irrotational Flow Approximation Continuity Equation Momentum Equation Derivation of the Bernoulli Equation in Irrotational Regions of Flow Two-Dimensional Irrotational Regions of Flow Superposition in Irrotational Regions of Flow Elementary Planar Irrotational Flows Irrotational Flows Formed by Superposition 10-6 The Boundary Layer Approximation The Boundary Layer Equations The Boundary Layer Procedure Displacement Thickness Momentum Thickness Turbulent Flat Plate Boundary Layer Boundary Layers with Pressure Gradients The Momentum Integral Technique for Boundary Layers Summary References and Suggested Reading Application Spotlight: Droplet Formation Problems Chapter 11: External Flow: Drag and Lift 11-1 Introduction 11-2 Drag and Lift 11-3 Friction and Pressure Drag Reducing Drag by Streamlining Flow Separation 11-4 Drag Coefficients of Common Geometries Biological Systems and Drag Drag Coefficients of Vehicles Superposition 11-5 Parallel Flow Over Flat Plates Friction Coefficient 11-6 Flow Over Cylinders And Spheres Effect of Surface Roughness 11-7 Lift Finite-Span Wings and Induced Drag Lift Generated by Spinning Summary References and Suggested Reading Application Spotlight: Drag Reduction Problems Chapter 12: Compressible Flow 12-1 Stagnation Properties 12-2 One-Dimensional Isentropic Flow Variation of Fluid Velocity with Flow Area Property Relations for Isentropic Flow of Ideal Gases 12-3 Isentropic Flow Through Nozzles Converging Nozzles Converging-Diverging Nozzles 12-4 Shock Waves and Expansion Waves Normal Shocks Oblique Shocks Prandtl-Meyer Expansion Waves 12-5 Duct Flow With Heat Transfer and Negligible Friction (Rayleigh Flow) Property Relations for Rayleigh Flow Choked Rayleigh Flow 12-6 Adiabatic Duct Flow With Friction (Fanno Flow) Property Relations for Fanno Flow Choked Fanno Flow Application Spotlight: Shock-Wave/Boundary-Layer Interactions Summary References and Suggested Reading Problems Chapter 13: Open-Channel Flow 13-1 Classification of Open-Channel Flows Uniform and Vaned Flows Laminar and Turbulent Flows in Channels 13-2 Froude Number and Wave Speed Speed of Surface Waves 13-3 Specific Energy 13-4 Conservation of Mass and Energy Equations 13-5 Uniform Flow in Channels Critical Uniform Flow Superposition Method for Nonuniform Perimeters 13-6 Best Hydraulic Cross Sections Rectangular Channels Trapezoidal Channels 13-7 Gradually Varied Flow Liquid Surface Profiles in Open Channels, y(x) Some Representative Surface Profiles Numerical Solution of Surface Profile 13-8 Rapidly Varied Flow and The Hydraulic Jump 13-9 Flow Control and Measurement Underflow Gates Overflow Gates Application Spotlight: Bridge Scour Summary References and Suggested Reading Problems Chapter 14: Turbomachinery 14-1 Classifications and Terminology 14-2 Pumps Pump Performance Curves and Matching a Pump to a Piping System Pump cavitation and Net Positive Suction Head Pumps in Series and Parallel Positive-Displacement Pumps Dynamic Pumps Centrifugal Pumps Axial Pumps 14-3 Pump Scaling Laws Dimensional Analysis Pump Specific Speed Affinity Laws 14-4 Turbines Positive-Displacement Turbines Dynamic Turbines Impulse Turbines Reaction Turbines Gas and Steam Turbines Wind Turbines 14-5 Turbine Scaling Laws Dimensionless Turbine Parameters Turbine Specific Speed Application Spotlight: Rotary Fuel Atomizers Summary References and Suggested Reading Problems Chapter 15: Introduction to Computational Fluid Dynamics 15-1 Introduction and Fundamentals Motivation Equations of Motion Solution Procedure Additional Equations of Motion Grid Generation and Grid Independence Boundary Conditions Practice Makes Perfect 15-2 Laminar CFD Calculations Pipe Flow Entrance Region at Re = 500 Flow around a Circular Cylinder at Re = 150 15-3 Turbulent CFD Calculations Flow around a Circular Cylinder at Re = 10,000 Flow around a Circular Cylinder at Re = 107 Design of the Stator for a Vane-Axial Flow Fan 15-4 CFD With Heat Transfer Temperature Rise through a Cross-Flow Heat Exchanger Cooling of an Array of Integrated Circuit Chips 15-5 Compressible Flow CFD Calculations Compressible Flow through a Converging-Diverging Nozzle Oblique Shocks over a Wedge 15-6 Open-Channel Flow CFD Calculations Flow over a Bump on the Bottom of a Channel Flow through a Sluice Gate (Hydraulic Jump) Application Spotlight: A Virtual Stomach Summary References and Suggested Reading Problems Appendix 1: Property Tables and Charts (SI Units) Table A-1 Molar Mass, Gas Constant, and Ideal-Gas Specific Heats of Some Substances Table A-2 Boiling and Freezing Point Properties Table A-3 Properties of Saturated Water Table A-4 Properties of Saturated Refrigerant-134a Table A-5 Properties of Saturated Ammonia Table A-6 Properties of Saturated Propane Table A-7 Properties of Liquids Table A-8 Properties of Liquid Metals Table A-9 Properties of Air at 1 atm Pressure Table A-10 Properties of Gases at 1 atm Pressure Table A-11 Properties of the Atmosphere at High Altitude Figure A-12 The Moody Chart for the Friction Factor for Fully Developed Flow in Circular Pipes Table A-13 One-Dimensional Isentropic Compressible Flow Functions for an Ideal Gas with k = 1.4 Table A-14 One-Dimensional Normal Shock Functions for an Ideal Gas with k = 1.4 Table A-15 Rayleigh Flow Functions for an Ideal Gas with k = 1.4 Table A-16 Fanno Flow Functions for an Ideal Gas with k = 1.4 Appendix 2: Property Tables and Charts (English Units) Table A-1E Molar Mass, Gas Constant, and Ideal-Gas Specific Heats of Some Substances Table A-2E Boiling and Freezing Point Properties Table A-3E Properties of Saturated Water Table A-4E Properties of Saturated Refrigerant-134a Table A-5E Properties of Saturated Ammonia Table A-6E Properties of Saturated Propane Table A-7E Properties of Liquids Table A-8E Properties of Liquid Metals Table A-9E Properties of Air at 1 atm Pressure Table A-10E Properties of Gases at 1 atm Pressure Table A-11E Properties of the Atmosphere at High Altitude Glossary INDEX Nomenclature Latin Letters Greek Letters Subscripts Superscripts Quick References Conversion Factors Some Physical Constants Commonly Used Properties Air at 20°C (68°F) and 1 atm Liquid water at 20°C (68°F) and 1 atm Errata