دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Third edition. نویسندگان: James O. Wilkes, Stacy G. Birmingham سری: Prentice-Hall international series in the physical and chemical engineering sciences ISBN (شابک) : 9780134712826, 013471282X ناشر: سال نشر: 2018 تعداد صفحات: 807 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Fluid mechanics for chemical engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک سیالات برای مهندسان شیمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover......Page 1
Title Page......Page 4
Copyright Page......Page 5
CONTENTS......Page 8
PREFACE......Page 16
PART I—MACROSCOPIC FLUID MECHANICS......Page 20
1.2 General Concepts of a Fluid......Page 22
1.3 Stresses, Pressure, Velocity, and the Basic Laws......Page 24
1.4 Physical Properties—Density, Viscosity, and Surface Tension......Page 29
1.5 Units and Systems of Units......Page 40
Example 1.1—Units Conversion......Page 43
Example 1.2—Mass of Air in a Room......Page 44
1.6 Hydrostatics......Page 45
Example 1.3—Pressure in an Oil Storage Tank......Page 48
Example 1.4—Multiple Fluid Hydrostatics......Page 49
Example 1.5—Pressure Variations in a Gas......Page 50
Example 1.6—Hydrostatic Force on a Curved Surface......Page 54
Example 1.7—Application of Archimedes’ Law......Page 56
1.7 Pressure Change Caused by Rotation......Page 58
Example 1.8—Overflow from a Spinning Container......Page 59
Problems for Chapter 1......Page 61
2.1 General Conservation Laws......Page 74
2.2 Mass Balances......Page 76
Example 2.1—Mass Balance for Tank Evacuation......Page 77
2.3 Energy Balances......Page 80
Example 2.2—Pumping n-Pentane......Page 84
2.4 Bernoulli’s Equation......Page 86
2.5 Applications of Bernoulli’s Equation......Page 89
Example 2.3—Tank Filling......Page 95
2.6 Momentum Balances......Page 97
Example 2.4—Impinging Jet of Water......Page 102
Example 2.5—Velocity of Wave on Water......Page 103
Example 2.6—Flow Measurement by a Rotameter......Page 108
2.7 Pressure, Velocity, and Flow Rate Measurement......Page 111
Problems for Chapter 2......Page 115
3.1 Introduction......Page 139
3.2 Laminar Flow......Page 142
Example 3.1—Polymer Flow in a Pipeline......Page 147
3.3 Models for Shear Stress......Page 148
3.4 Piping and Pumping Problems......Page 152
Example 3.2—Unloading Oil from a Tanker Specified Flow Rate and Diameter......Page 161
Example 3.3—Unloading Oil from a Tanker Specified Diameter and Pressure Drop......Page 163
Example 3.5—Unloading Oil from a Tanker Miscellaneous Additional Calculations......Page 166
3.5 Flow in Noncircular Ducts......Page 169
Example 3.6—Flow in an Irrigation Ditch......Page 171
3.6 Compressible Gas Flow in Pipelines......Page 175
3.7 Compressible Flow in Nozzles......Page 178
3.8 Complex Piping Systems......Page 182
Example 3.7—Solution of a Piping/Pumping Problem......Page 184
Problems for Chapter 3......Page 187
4.1 Introduction......Page 204
4.2 Pumps and Compressors......Page 207
Example 4.1—Pumps in Series and Parallel......Page 212
4.3 Drag Force on Solid Particles in Fluids......Page 213
Example 4.2—Manufacture of Lead Shot......Page 221
4.4 Flow Through Packed Beds......Page 223
Example 4.3—Pressure Drop in a Packed-Bed Reactor......Page 227
4.5 Filtration......Page 229
4.6 Fluidization......Page 234
4.7 Dynamics of a Bubble-Cap Distillation Column......Page 235
4.8 Cyclone Separators......Page 238
4.9 Sedimentation......Page 241
4.10 Dimensional Analysis......Page 243
Example 4.4—Thickness of the Laminar Sublayer......Page 248
Problems for Chapter 4......Page 249
PART II—MICROSCOPIC FLUID MECHANICS......Page 266
5.1 Introduction to Vector Analysis......Page 268
5.2 Vector Operations......Page 269
Example 5.1—The Gradient of a Scalar......Page 272
Example 5.3—An Alternative to the Differential Element......Page 276
Example 5.5—The Laplacian of a Scalar......Page 281
5.3 Other Coordinate Systems......Page 282
5.4 The Convective Derivative......Page 285
5.5 Differential Mass Balance......Page 286
Example 5.6—Physical Interpretation of the Net Rate of Mass Outflow......Page 288
Example 5.7—Alternative Derivation of the Continuity Equation......Page 289
5.6 Differential Momentum Balances......Page 290
5.7 Newtonian Stress Components in Cartesian Coordinates......Page 293
Example 5.8—Constant-Viscosity Momentum Balances in Terms of Velocity Gradients......Page 299
Example 5.9—Vector Form of Variable-Viscosity Momentum Balance......Page 303
Problems for Chapter 5......Page 304
6.1 Introduction......Page 311
Example 6.1—Flow Between Parallel Plates......Page 313
Example 6.2—Shell Balance for Flow Between Parallel Plates......Page 320
Example 6.3—Film Flow on a Moving Substrate......Page 322
Example 6.4—Transient Viscous Diffusion of Momentum (COMSOL)......Page 326
6.4 Poiseuille and Couette Flows in Polymer Processing......Page 332
Example 6.5—The Single-Screw Extruder......Page 333
Example 6.6—Flow Patterns in a Screw Extruder (COMSOL)......Page 338
Example 6.7—Flow Through an Annular Die......Page 344
Example 6.8—Spinning a Polymeric Fiber......Page 347
6.6 Solution of the Equations of Motion in Spherical Coordinates......Page 349
Example 6.9—Analysis of a Cone-and-Plate Rheometer......Page 350
Problems for Chapter 6......Page 355
7.1 Introduction......Page 376
7.2 Rotational and Irrotational Flows......Page 378
Example 7.1—Forced and Free Vortices......Page 381
7.3 Steady Two-Dimensional Irrotational Flow......Page 383
7.4 Physical Interpretation of the Stream Function......Page 386
7.5 Examples of Planar Irrotational Flow......Page 388
Example 7.2—Stagnation Flow......Page 391
Example 7.3—Combination of a Uniform Stream and a Line Sink (C)......Page 393
Example 7.4—Flow Patterns in a Lake (COMSOL)......Page 395
7.6 Axially Symmetric Irrotational Flow......Page 401
7.7 Uniform Streams and Point Sources......Page 403
7.8 Doublets and Flow Past a Sphere......Page 407
7.9 Single-Phase Flow in a Porous Medium......Page 410
Example 7.5—Underground Flow of Water......Page 411
7.10 Two-Phase Flow in Porous Media......Page 413
7.11 Wave Motion in Deep Water......Page 419
Problems for Chapter 7......Page 423
8.1 Introduction......Page 437
8.2 Simplified Treatment of Laminar Flow Past a Flat Plate......Page 438
Example 8.1—Flow in an Air Intake (C)......Page 443
8.3 Simplification of the Equations of Motion......Page 445
8.4 Blasius Solution for Boundary-Layer Flow......Page 448
8.5 Turbulent Boundary Layers......Page 451
Example 8.2—Laminar and Turbulent Boundary Layers Compared......Page 452
8.6 Dimensional Analysis of the Boundary-Layer Problem......Page 453
8.7 Boundary-Layer Separation......Page 456
Example 8.3—Boundary-Layer Flow Between Parallel Plates (COMSOL)......Page 458
Example 8.4—Entrance Region for Laminar Flow Between Flat Plates......Page 465
8.8 The Lubrication Approximation......Page 467
Example 8.5—Flow in a Lubricated Bearing (COMSOL)......Page 473
8.9 Polymer Processing by Calendering......Page 476
Example 8.6—Pressure Distribution in a Calendered Sheet......Page 480
8.10 Thin Films and Surface Tension......Page 482
Problems for Chapter 8......Page 485
9.1 Introduction......Page 499
Example 9.1—Numerical Illustration of a Reynolds Stress Term......Page 505
9.2 Physical Interpretation of the Reynolds Stresses......Page 506
9.3 Mixing-Length Theory......Page 507
9.4 Determination of Eddy Kinematic Viscosity and Mixing Length......Page 510
9.5 Velocity Profiles Based on Mixing-Length Theory......Page 512
Example 9.2—Investigation of the von Kármán Hypothesis......Page 513
9.6 The Universal Velocity Profile for Smooth Pipes......Page 514
9.7 Friction Factor in Terms of Reynolds Number for Smooth Pipes......Page 516
Example 9.3—Expression for the Mean Velocity......Page 517
9.8 Thickness of the Laminar Sublayer......Page 518
9.9 Velocity Profiles and Friction Factor for Rough Pipe......Page 520
9.10 Blasius-Type Law and the Power-Law Velocity Profile......Page 521
9.11 A Correlation for the Reynolds Stresses......Page 522
9.12 Computation of Turbulence by the κ–ɛ Method......Page 525
Example 9.4—Flow Through an Orifice Plate (COMSOL)......Page 527
Example 9.5—Turbulent Flow in an Obstructed U-Duct (COMSOL)......Page 533
9.13 Analogies Between Momentum and Heat Transfer......Page 539
Example 9.6—Evaluation of the Momentum/Heat- Transfer Analogies......Page 541
9.14 Turbulent Jets......Page 543
Problems for Chapter 9......Page 551
10.2 Rise of Bubbles in Unconfined Liquids......Page 561
10.3 Pressure Drop and Void Fraction in Horizontal Pipes......Page 566
Example 10.2—Two-Phase Flow in a Horizontal Pipe......Page 571
10.4 Two-Phase Flow in Vertical Pipes......Page 573
Example 10.3—Limits of Bubble Flow......Page 576
Example 10.4—Performance of a Gas-Lift Pump......Page 580
Example 10.5—Two-Phase Flow in a Vertical Pipe......Page 583
10.5 Flooding......Page 585
10.6 Introduction to Fluidization......Page 589
10.7 Bubble Mechanics......Page 591
10.8 Bubbles in Aggregatively Fluidized Beds......Page 596
Example 10.6—Fluidized Bed with Reaction (C)......Page 602
Problems for Chapter 10......Page 605
11.1 Introduction......Page 621
11.2 Classification of Non-Newtonian Fluids......Page 622
11.3 Constitutive Equations for Inelastic Viscous Fluids......Page 625
Example 11.1—Pipe Flow of a Power-Law Fluid......Page 630
Example 11.2—Pipe Flow of a Bingham Plastic......Page 634
Example 11.3—Non-Newtonian Flow in a Die (COMSOL)......Page 636
11.4 Constitutive Equations for Viscoelastic Fluids......Page 645
11.5 Response to Oscillatory Shear......Page 652
11.6 Characterization of the Rheological Properties of Fluids......Page 655
Example 11.4—Proof of the Rabinowitsch Equation......Page 656
Example 11.5—Working Equation for a Coaxial- Cylinder Rheometer: Newtonian Fluid......Page 661
Problems for Chapter 11......Page 663
12.1 Introduction......Page 672
12.2 Physics of Microscale Fluid Mechanics......Page 673
Example 12.1—Calculation of Reynolds Numbers......Page 674
12.4 Mixing, Transport, and Dispersion......Page 675
12.5 Species, Energy, and Charge Transport......Page 677
12.6 The Electrical Double Layer and Electrokinetic Phenomena......Page 680
Example 12.2—Relative Magnitudes of Electroosmotic and Pressure-Driven Flows......Page 681
Example 12.4—Electroosmosis in a Microchannel (COMSOL)......Page 686
Example 12.5—Electroosmotic Switching in a Branched Microchannel (COMSOL)......Page 692
12.7 Measuring the Zeta Potential......Page 695
Example 12.6—Magnitude of Typical Streaming Potentials......Page 696
12.9 Particle and Macromolecule Motion in Microfluidic Channels......Page 697
Example 12.7—Gravitational and Magnetic Settling of Assay Beads......Page 698
Problems for Chapter 12......Page 702
13.1 Introduction and Motivation......Page 707
13.2 Numerical Methods......Page 709
13.3 Learning CFD by Using ANSYS Fluent......Page 718
13.4 Practical CFD Examples......Page 722
Example 13.1—Fluent: Developing Flow in a Pipe Entrance Region......Page 723
Example 13.2—Fluent: Pipe Flow Through a Sudden Expansion......Page 726
Example 13.3—Fluent: A Two-Dimensional Mixing Junction......Page 728
Example 13.4—Fluent: Flow over a Cylinder......Page 732
References for Chapter 13......Page 738
14.1 COMSOL Multiphysics—An Overview......Page 739
14.2 The Steps for Solving Problems in COMSOL......Page 742
14.3 How to Run COMSOL......Page 744
Example 14.1—Flow in a Porous Medium with an Impervious Hole (COMSOL)......Page 745
Example 14.2—Drawing a Complex Shape (COMSOL)......Page 757
14.4 Variables, Constants, Expressions, and Units......Page 760
14.5 Boundary Conditions......Page 761
14.6 Variables Used by COMSOL......Page 762
14.7 Wall Functions in Turbulent-Flow Problems......Page 763
14.8 Streamline Plotting in COMSOL......Page 766
14.9 Special COMSOL Features Used in the Examples......Page 768
14.10 Drawing Tools......Page 773
14.11 Fluid Mechanics Problems Solvable by COMSOL......Page 775
14.12 Conclusion—Problems and Learning Tools......Page 780
APPENDIX A: USEFUL MATHEMATICAL RELATIONSHIPS......Page 781
APPENDIX B: ANSWERS TO THE TRUE/FALSE ASSERTIONS......Page 787
APPENDIX C: SOME VECTOR AND TENSOR OPERATIONS......Page 790
C......Page 792
D......Page 793
F......Page 794
J......Page 795
N......Page 796
P......Page 797
S......Page 798
V......Page 799
Z......Page 800
COMSOL MULTIPHYSICS INDEX......Page 801
THE AUTHORS......Page 803