ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fluid Mechanics and Hydraulic Machines

دانلود کتاب مکانیک سیالات و ماشین های هیدرولیک

Fluid Mechanics and Hydraulic Machines

مشخصات کتاب

Fluid Mechanics and Hydraulic Machines

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9789353433697 
ناشر: Pearson Education 
سال نشر: 2019 
تعداد صفحات: [993] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Fluid Mechanics and Hydraulic Machines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مکانیک سیالات و ماشین های هیدرولیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
About Pearson
Title
Copyright
Dedication
Brief Contents
Contents
Preface
About the Author
1 Basic Concepts and Properties of Fluids
	1.1 Introduction
	1.2 Fluid Mechanics and Its Applications
		1.2.1 Application Areas of Fluid Mechanics
	1.3 Units and Dimensions
	1.4 Pressure in Fluids
	1.5 Fluid Continuum
	1.6 Fluid Properties
	1.7 Mass Density or Density
	1.8 Specific Weight or Weight Density
	1.9 Specific Volume
	1.10 Specific Gravity or Relative Density
	1.11 Viscosity or Dynamic Viscosity
		1.11.1 Newton’s Law of Viscosity
		1.11.2 Units of Viscosity
		1.11.3 Variation of Viscosity with Temperature
	1.12 Kinematic Viscosity
	1.13 Types of Fluids
	1.14 Thermodynamic Properties
		1.14.1 Perfect Gas Law
		1.14.2 Universal Gas Constant
		1.14.3 Isothermal Process (Constant Temperature Process)
		1.14.4 Isobaric Process (Constant Pressure Process)
		1.14.5 Reversible Adiabatic Process (Isentropic Process)
	1.15 Surface Tension
		1.15.1 Pressure Inside a Liquid Droplet
		1.15.2 Pressure Inside a Soap Bubble
		1.15.3 Pressure Inside a Liquid Jet
	1.16 Capillarity (Capillary Effect)
		1.16.1 Expression for the Capillary Rise or Fall
	1.17 Compressibility and the Bulk Modulus
		1.17.1 Bulk Modulus for an Isothermal Process
		1.17.2 Bulk Modulus for Reversible Adiabatic Process (or Isentropic Process)
	1.18 Vapour Pressure
	1.19 Cavitation
	Summary • Multiple-choice Questions • Review Questions • Problems
2 Fluid Pressure and Its Measurement
	2.1 Introduction
	2.2 Fluid Pressure
	2.3 Pascal’s Law
	2.4 Hydrostatic Law (Pressure Variation in a Static Fluid)
	2.5 Atmospheric, Absolute, Gauge and Vacuum Pressures
	2.6 Measurement of Pressure
		2.6.1 Manometers
		2.6.2 Mechanical Gauges
	2.7 Simple Manometers (Open Type Manometers)
		2.7.1 Piezometer
		2.7.2 U-tube Manometer (Double Column Manometer)
		2.7.3 Single Column Manometer
		2.7.4 Double U-tube Manometer (Compound Manometer)
	2.8 Differential Manometers
		2.8.1 U-tube Differential Manometer (or Upright U-tube Differential Manometer)
		2.8.2 Inverted U-tube Manometer
	2.9 Advantages and Limitations of Manometers
	2.10 Micromanometers
	2.11 Mechanical Gauges
		2.11.1 Bourdon Tube Pressure Gauge
		2.11.2 Diaphragm Pressure Gauge
		2.11.3 Bellows Pressure Gauge
		2.11.4 Dead Weight Pressure Gauge
	2.12 Pressure Variation in Compressible Fluid (Aerostatics)
		2.12.1 Isothermal Process
		2.12.2 Adiabatic Process
	Summary • Multiple-choice Questions • Review Questions • Problems
3 Hydrostatic Forces on Submerged Surfaces
	3.1 Introduction
	3.2 Total Pressure, Centre of Pressure and Centre of Gravity
		3.2.1 Total Pressure
		3.2.2 Centre of Pressure
		3.2.3 Centre of Gravity
	3.3 Moments of Area and Geometrical Properties
		3.3.1 First Moment of Area
		3.3.2 Second Moment of Area (or Area Moment of Inertia)
	3.4 Horizontal Submerged Plane Surface
		3.4.1 Total Pressure on a Horizontal Submerged Plane Surface
	3.5 Vertically Submerged Plane Surface
		3.5.1 Total Pressure on a Vertical Submerged Plane Surface
		3.5.2 Centre of Pressure on a Vertical Submerged Plane Surface
	3.6 Inclined Submerged Plane Surface
		3.6.1 Total Pressure on an Inclined Plane Submerged Surface
		3.6.2 Centre of Pressure on an Inclined Plane Submerged Surface
	3.7 Curved Submerged Plane Surface
	3.8 Analysis of Forces on Dams
	3.9 Lock Gates
	Summary • Multiple-choice Questions • Review Questions • Problems
4 Liquids in Relative Equilibrium
	4.1 Introduction
	4.2 Liquid Containers Subjected to Constant Horizontal Acceleration
	4.3 Liquid Containers Subjected to Constant Vertical Acceleration
	4.4 Liquid Containers Subjected to Constant Acceleration Along Inclined Plane
	4.5 Liquid Containers Subjected to Constant Rotation
	Summary • Multiple-choice Questions • Review Questions • Problems
5 Buoyancy and Floatation
	5.1 Introduction
	5.2 Buoyancy, Buoyant Force and Centre of Buoyancy
		5.2.1 Buoyancy
		5.2.2 Buoyant Force
		5.2.3 Centre of Buoyancy
	5.3 Archimedes’ Principle
	5.3.1 Proof
	5.4 Metacentre
	5.5 Metacentric Height and Methods of Its Determination
		5.5.1 Analytical Method
		5.5.2 Experimental Method
	5.6 Stability of Submerged and Floating Bodies
		5.6.1 Stability of a Submerged Body
		5.6.2 Stability of a Floating Body
	5.7 Oscillation of a Floating Body
	Summary • Multiple-choice Questions • Review Questions • Problems
6 Fluid Kinematics
	6.1 Introduction
	6.2 Velocity of Fluid Particles
	6.3 Types of Fluid Flow
		6.3.1 Steady and Unsteady Flows
		6.3.2 Uniform and Non-uniform Flows
		6.3.3 Laminar and Turbulent Flows
		6.3.4 Compressible and Incompressible Flows
		6.3.5 One-dimensional, Two-dimensional and Three-dimensional Flows
		6.3.6 Rotational and Irrotational Flows
	6.4 Description of Fluid Flow Pattern (Flow Visualization)
	6.5 Acceleration of a Fluid Particle
		6.5.1 Lagrangian Method
		6.5.2 Eulerian Method
	6.6 Tangential and Normal Accelerations
	6.7 Rate of Flow (Discharge)
	6.8 Continuity Equation
	6.9 Continuity Equation in Differential Form (3-Dimensions)
	6.10 Continuity Equation in Cylindrical Polar Coordinates
	6.11 Types of Motions of a Fluid Element
		6.11.1 Linear Translation
		6.11.2 Linear Deformation
		6.11.3 Angular Deformation
		6.11.4 Rotation
		6.11.5 Vorticity
		6.11.6 Circulation
	6.12 Velocity Potential and Stream Functions
		6.12.1 Velocity Potential Function
		6.12.2 Stream Function
		6.12.3 Cauchy–Riemann Equations (Relation between Stream Function and Velocity Potential Function)
		6.12.4 Orthogonality of Streamlines and Equipotential Lines
		6.12.5 Flow Net
	Summary • Multiple-choice Questions • Review Questions • Problems
7 Fluid Dynamics
	7.1 Introduction
	7.2 Energy and Forces Acting on a Flowing Fluid
		7.2.1 Energy of a Flowing Fluid
		7.2.2 Forces Acting on a Flowing Fluid
	7.3 Equations of Motion
	7.4 Euler’s Equation of Motion
	7.5 Bernoulli’s Equation
	7.6 Bernoulli’s Equation for Real Fluids
	7.7 Bernoulli’s Equation from Energy Equation
	7.8 Practical Applications of Bernoulli’s Equation
		7.8.1 Venturimeter
		7.8.2 Orificemeter
		7.8.3 Pitot Tube
	7.9 Kinetic Energy and Momentum Correction Factors
		7.9.1 Kinetic Energy Correction Factor
		7.9.2 Momentum Correction Factor
	7.10 Free Liquid Jet
	7.11 Impulse-momentum Equation
		7.11.1 Impulse-Momentum Equation for Steady Flow and Force on a Pipe Bend
	7.12 Moment of Momentum Equation (Angular Momentum Principle)
	Summary • Multiple-choice Questions • Review Questions • Problems
8 Vortex Flow
	8.1 Introduction
	8.2 Types of Vortex Flow
		8.2.1 Forced Vortex Flow
		8.2.2 Free Vortex Flow
		8.2.3 Other Types of Vortex Flow
	8.3 Equation of Motion for a Vortex Flow
	8.4 Equation of Forced Vortex Flow
	8.5 Rotation of Liquid in a Closed Cylindrical Vessel
	8.6 Closed Cylindrical Rotating Vessel Completely Filled with a Liquid
	8.7 Equation of Free Vortex Flow
	Summary • Multiple-choice Questions • Review Questions • Problems
9 Potential Flow (Ideal Fluid Flow)
	9.1 Introduction
	9.2 Uniform Flow
	9.3 Source Flow
	9.4 Sink Flow
	9.5 Free Vortex Flow
	9.6 Superimposed Flow
		9.6.1 Source and Uniform Flow (Flow Past a Half Body)
		9.6.2 Source and Sink Pair
		9.6.3 Doublet (or Dipole)
		9.6.4 A Doublet in a Uniform Flow (Flow Past a Circular Cylinder)
		9.6.5 Source, Sink and Uniform Flow (Flow Past a Rankine Oval Body)
		9.6.6 Doublet, Free Vortex and Uniform Flow (Flow Past a Cylinder with Circulation)
	Summary • Multiple-choice Questions • Review Questions • Problems
10 Flow Through Orifices and Mouthpieces
	10.1 Introduction
	10.2 Classification of Orifices
	10.3 Flow Through an Orifice
	10.4 Hydraulic Coefficients (Coefficients for an Orifice)
	10.5 Experimental Determination of Hydraulic Coefficients
		10.5.1 Determination of Coefficient of Velocity (Cv )
		10.5.2 Determination of Coefficient of Discharge (Cd )
		10.5.3 Determination of Coefficient of Contraction (Cc )
	10.6 Discharge Through a Large Rectangular Orifice
	10.7 Discharge Through Submerged Orifices
		10.7.1 Fully Submerged Orifice (or Totally Drowned Orifice)
		10.7.2 Partially Submerged Orifice
	10.8 Time of Emptying a Tank Through an Orifice
		10.8.1 Time of Emptying Vertical Tank of Uniform Cross Section
		10.8.2 Time of Emptying Hemispherical Tank
		10.8.3 Time of Emptying a Circular Horizontal Tank
	10.9 Classification of Mouthpieces
	10.10 Flow Through an External Mouthpiece
	10.11 Flow Through a Convergent-divergent Mouthpiece
	10.12 Flow Through an Internal Mouthpiece (Reentrant or Borda’s Mouthpiece)
		10.12.1 Borda’s Mouthpiece Running Free
		10.12.2 Borda’s Mouthpiece Running Full
	Summary • Multiple-choice Questions • Review Questions • Problems
11 Flow Over Notches and Weirs
	11.1 Introduction
	11.2 Comparison Between a Notch and a Weir
	11.3 Classifications of Notches and Weirs
		11.3.1 Classification of Notches
		11.3.2 Classification of Weirs
	11.4 Discharge Over a Rectangular Notch or Weir
		11.4.1 Effect on Discharge Due to Error in Measurement of Head
		11.4.2 Velocity of Approach
	11.5 Empirical Formulae for Discharge Over Rectangular Weirs
		11.5.1 Francis’s Formula
		11.5.2 Bazin’s Formula
		11.5.3 Rehbock’s Formula
	11.6 Discharge Over a Triangular Notch or Weir
		11.6.1 Effect on Discharge Due to Error in Measurement of Head
		11.6.2 Advantages of a Triangular Notch (or Weir) Over a Rectangular Notch (or Weir)
	11.7 Discharge Over a Trapezoidal Notch or Weir
	11.8 Cipolletti Weir or Notch
	11.9 Discharge Over a Stepped Notch
	11.10 Discharge Over a Broad-crested Weir
	11.11 Discharge Over a Narrow-crested Weir
	11.12 Discharge Over an Ogee Weir
	11.13 Discharge Over a Submerged or Drowned Weir
	11.14 Ventilation of Suppressed Weir
	11.15 Time of Emptying a Reservoir with Rectangular Weir or Notch
	11.16 Time of Emptying a Reservoir with Triangular Weir or Notch
	Summary • Multiple-choice Questions • Review Questions • Problems
12 Laminar Flow (Viscous Flow)
	12.1 Introduction
	12.2 Reynolds Experiments
	12.3 Navier-Stokes Equations of Motion
	12.4 Relation Between Shear Stress and Pressure Gradient
	12.5 Laminar Flow in Circular Pipes (Hagen-Poiseuille Theory)
	12.6 Laminar Flow Through Annulus
	12.7 Laminar Flow Between Two Parallel Plates When Both Plates are at Rest
	12.8 Laminar Flow Between Two Parallel Plates When One Plate Moves and Other at Rest (Couette Flow)
	12.9 Power Absorbed in Bearings
		12.9.1 Journal Bearing
		12.9.2 Foot Step Bearing
		12.9.3 Collar Bearing
	12.10 Movement of Piston in Dashpot
	12.11 Measurement of Viscosity (Viscometers)
		12.11.1 Capillary Tube Viscometer
		12.11.2 Rotating Cylinder Viscometer
		12.11.3 Falling Sphere Viscometer
		12.11.4 Efflux Viscometer
	Summary • Multiple-choice Questions • Review Questions • Problems
13 Turbulent Flow in Pipes
	13.1 Introduction
	13.2 Loss of Head in Pipes (Darcy-Weisbach Equation)
	13.3 Characteristics of Turbulent Flow (Turbulence)
		13.3.1 Classification of Turbulence
		13.3.2 Mean and Fluctuating Velocities
		13.3.3 Degree and Intensity of Turbulence
		13.3.4 Scale of Turbulence
		13.3.5 Kinetic Energy of Turbulence
		13.3.6 Reynolds Equations of Turbulence
	13.4 Shear Stresses in Turbulent Flow
		13.4.1 Boussinesq’s Theory
		13.4.2 Reynolds Theory
		13.4.3 Prandtl’s Mixing Length Theory
		13.4.4 Von Karman Similarity Concept
	13.5 Universal Velocity Distribution Equation
	13.6 Hydrodynamically Smooth and Rough Boundaries
	13.7 Velocity Distribution for Turbulent Flow in Smooth Pipes
	13.8 Velocity Distribution for Turbulent Flow in Rough Pipes
	13.9 Velocity Distribution in Terms of Average Velocity
	13.10 Power Law for Velocity Distribution in Smooth Pipes
	13.11 Resistance to Flow of Fluid in Smooth and Rough Pipes
	Summary • Multiple-choice Questions • Review Questions • Problems
14 Flow Through Pipes
	14.1 Introduction
	14.2 Energy Loss (Head Loss) in Pipes
		14.2.1 Major Losses
		14.2.2 Minor Losses
	14.3 Formulae for Major Energy Loss in Pipes
		14.3.1 Darcy-Weisbach Formula
		14.3.2 Chezy’s Formula
		14.3.3 Manning’s Formula
		14.3.4 Hazen William’s Formula
	14.4 Minor Energy Losses in Pipes
		14.4.1 Loss of Head Due to Sudden Enlargement
		14.4.2 Loss of Head Due to Sudden Contraction
		14.4.3 Loss of Head at the Inlet (Entrance) of a Pipe
		14.4.4 Loss of Head at the Outlet (Exit) of a Pipe
		14.4.5 Loss of Head Due to Obstruction in a Pipe
		14.4.6 Loss of Head Due to Bend in a Pipe
		14.4.7 Loss of Head in Various Pipe Fittings
	14.5 Hydraulic Gradient Line and Total Energy Line
	14.6 Pipes in Series (Compound Pipes)
	14.7 Equivalent Pipe
	14.8 Pipes in Parallel
	14.9 Branched Pipe System
	14.10 Siphon
	14.11 Power Transmission Through Pipes
	14.12 Flow Through Nozzles
		14.12.1 Discharge through Nozzle
		14.12.2 Efficiency of Power Transmission through Nozzle
		14.12.3 Condition for Maximum Power through Nozzle
		14.12.4 Diameter of Nozzle for Maximum Power Transmission through Nozzle
	14.13 Water Hammer
		14.13.1 Gradual Closure of Valve
		14.13.2 Sudden Closure of Valve in a Rigid Pipe
		14.13.3 Sudden Closure of Valve in an Elastic Pipe
		14.13.4 Time Taken by Pressure Wave to Travel from Valve to the Tank and from Tank to Valve
	Summary • Multiple-choice Questions • Review Questions • Problems
15 Boundary Layer Theory
	15.1 Introduction
	15.2 Description of Boundary Layer
		15.2.1 Laminar Boundary Layer
		15.2.2 Transition Region
		15.2.3 Turbulent Boundary Layer
		15.2.4 Laminar Sublayer
	15.3 Boundary Layer Parameters
		15.3.1 Boundary Layer Thickness
		15.3.2 Displacement Thickness (δd)
		15.3.3 Momentum Thickness (δm)
		15.3.4 Energy Thickness (δe)
	15.4 Drag Force on a Flat Plate (Von Karman Momentum Integral Equation)
	15.5 Prandtl’s Boundary Layer Equations
	15.6 Blasius Solution for Laminar Boundary Layer Flows
	15.7 Velocity Profiles for Laminar Boundary Layer
	15.8 Turbulent Boundary Layer
	15.9 Total Drag Due to Laminar and Turbulent Layers
	15.10 Boundary Layer Separation, Its Effects, and Control
		15.10.1 Effects of Boundary Layer Separation
		15.10.2 Methods of Controlling Separation
	Summary • Multiple-choice Questions • Review Questions • Problems
16 Drag and Lift on Submerged Bodies
	16.1 Introduction
	16.2 Drag and Lift
		16.2.1 Types of Drag
		16.2.2 Expression for Drag and Lift
		16.2.3 Dimensional Analysis of Drag and Lift
	16.3 Streamlined and Bluff Bodies
		16.3.1 Streamlined Body
		16.3.2 Bluff Body
	16.4 Drag on a Sphere (Stokes’ Law)
	16.5 Terminal Velocity of a Body
	16.6 Drag on a Cylinder
	16.7 Circulation and Lift on a Cylinder
	16.8 Expression for Lift on a Rotating Cylinder
		16.8.1 Expression for Lift Coefficient for a Rotating Cylinder
	16.9 Basic Terminology for an Airfoil
	16.10 Circulation and Lift on an Airfoil
	Summary • Multiple-choice Questions • Review Questions • Problems
17 Compressible Fluid Flow
	17.1 Introduction
	17.2 Continuity Equation
	17.3 Bernoulli’s Equation (Energy Equation)
		17.3.1 Bernoulli’s Equation for Isothermal Process
		17.3.2 Bernoulli’s Equation for Adiabatic Process
	17.4 Velocity of Sound in a Fluid Medium
		17.4.1 Velocity of Sound in Terms of Bulk Modulus
		17.4.2 Velocity of Sound for Isothermal Process
		17.4.3 Velocity of Sound for Adiabatic Process
	17.5 Mach Number
	17.6 Propagation of Pressure Wave in a Compressible Fluid
	17.7 Stagnation Properties
		17.7.1 Stagnation Pressure
		17.7.2 Stagnation Density
		17.7.3 Stagnation Temperature
	17.8 Area and Velocity Relationship for Compressible Flow
	17.9 Compressible Fluid Flow Through a Convergent Nozzle
	17.10 Compressible Fluid Flow Through a Venturimeter
	17.11 Shock Waves
		17.11.1 Normal Shock Wave
		17.11.2 Oblique Shock Wave
	Summary • Multiple-choice Questions • Review Questions • Problems
18 Flow in Open Channels
	18.1 Introduction
	18.2 Geometrical Parameters for Open Channels
	18.3 Types of Flow in Open Channels
	18.4 Discharge Through Open Channels (Chezy’s Formula)
	18.5 Most Economical Section of Channels
		18.5.1 Most Economical Rectangular Channel Section
		18.5.2 Most Economical Trapezoidal Channel Section
		18.5.3 Most Economical Circular Channel Section
	18.6 Non-uniform Flow Through Open Channels
		18.6.1 Specific Energy Curve
		18.6.2 Critical Depth
		18.6.3 Critical Velocity
		18.6.4 Sub-Critical Flow
		18.6.5 Super-Critical Flow
		18.6.6 Minimum Specific Energy in Terms of Critical Depth
		18.6.7 Condition for Maximum Discharge for a Given Value of Specific Energy
	18.7 Hydraulic Jump
		18.7.1 Depth of Hydraulic Jump
		18.7.2 Length of Hydraulic Jump
		18.7.3 Loss of Energy Due to Hydraulic Jump
	Summary • Multiple-choice Questions • Review Questions • Problems
19 Dimensional Analysis and Model Similitude
	19.1 Introduction
	19.2 Dimensions and Units of Physical Quantities
	19.3 Dimensional Homogeneity
	19.4 Methods of Dimensional Analysis
		19.4.1 Rayleigh Method
		19.4.2 Buckingham p Method
	19.4.3 Advantages and Limitations of Dimensional Analysis
	19.5 Model Studies
	19.6 Similitude-types of Similarities
		19.6.1 Geometric Similarity
		19.6.2 Kinematic Similarity
		19.6.3 Dynamic Similarity
	19.7 Dimensionless Numbers and their Significance
		19.7.1 Reynolds Number
		19.7.2 Froude Number
		19.7.3 Euler Number
		19.7.4 Weber Number
		19.7.5 Mach Number
	19.8 Similarity Laws or Model Laws
		19.8.1 Reynolds Model Law
		19.8.2 Froude Model Law
		19.8.3 Euler Model Law
		19.8.4 Weber Model Law
		19.8.5 Mach Model Law
	19.9 Types of Models
	19.10 Scale Effects in Models
	Summary • Multiple-choice Questions • Review Questions • Problems
20 Impact of Free Jets and Basics of Fluid Machines
	20.1 Introduction
	20.2 Impulse-momentum Principle
	20.3 Force Exerted by a Jet on a Stationary Vertical Flat Plate
	20.4 Force Exerted by a Jet on a Moving Vertical Flat Plate
	20.5 Force Exerted by Jet on a Stationary Inclined Flat Plate
	20.6 Force Exerted by a Jet on a Moving Inclined Flat Plate
	20.7 Force Exerted by a Jet on a Series of Flat Plates
	20.8 Force Exerted by a Jet on Stationary Curved Vane
		20.8.1 Force Exerted on a Stationary Symmetrical Curved Vane When the Jet Strikes at the Centre of Vane
		20.8.2 Force Exerted on a Stationary Curved Vane When the Jet Strikes the Symmetrical Curved Vane at One End Tangentially
		20.8.3 Force Exerted on a Stationary Curved Vane When the Jet Strikes the Unsymmetrical Curved Vane at One End Tangentially
	20.9 Force Exerted by Jet on Moving Curved Vane
		20.9.1 Force Exerted on a Single Symmetrical Moving Curved Vane When the Jet Strikes at the Centre of Vane
		20.9.2 Force on a Series of Symmetrical Moving Curved Vanes When the Jet Strikes at the Centre of Vanes
		20.9.3 Force Exerted by a Jet on an Unsymmetrical Moving Curved Vane When the Jet Strikes Tangentially at One of the Tips
		20.9.4 Force Exerted by a Jet on a Series of Radial Curved Vanes
	20.10 Force Exerted by a Jet on a Hinged Plate
	20.11 Jet Propulsion of Ships
		20.11.1 Inlet Orifices at Right Angle to the Motion of the Ship
		20.11.2 Inlet Orifices Face the Direction of Motion of the Ship
	20.12 Fluid Machines
	20.13 Hydraulic Machines and Its Main Parts
	Summary • Multiple-choice Questions • Review Questions • Problems
21 Pelton Turbine (Impulse Turbine)
	21.1 Introduction
	21.2 Classification of Hydraulic Turbines
	21.3 Impulse Turbine Operation Principle
	21.4 General Layout of a Hydroelectric Power Plant
	21.5 Heads and Efficiencies of a Hydraulic Turbine
	21.6 Waterwheel
	21.7 Pelton Turbine (Pelton Wheel)
	21.8 Governing of Hydraulic Turbines
	21.9 Governing of Pelton Turbines
		21.9.1 Working of the Governor
	21.10 Velocity Triangles, Work Done and Efficiency of the Pelton Turbine
	21.11 Design Aspects of the Pelton Turbine
		21.11.1 Working Proportions of the Pelton Turbine
	Summary • Multiple-choice Questions • Review Questions • Problems
22 Francis Turbine (Radial Flow Reaction Turbines)
	22.1 Introduction
	22.2 Radial Flow Reaction Turbines
		22.2.1 Inward Radial Flow Reaction Turbine
		22.2.2 Outward Radial Flow Reaction Turbine
	22.3 Comparisons Between Impulse and Reaction Turbines
	22.4 Differences Between Inward and Outward Radial Flow Reaction Turbines
	22.5 Francis Turbine
	22.6 Velocity Triangles, Work Done and Efficiency of Radial Flow Reaction Turbines and Francis Turbine
		22.6.1 Change of Kinetic Energy and Pressure Energy in the Runner of a Radial Flow Reaction Turbine
		22.6.2 Degree of Reaction
	22.7 Definitions and Working Proportions of a Francis Turbine and Radial Flow Reaction Turbines
	22.8 Design of Francis Turbine Runner
		22.8.1 Shape of Francis Turbine Runner
	Summary • Multiple-choice Questions • Review Questions • Problems
23 Propeller and Kaplan Turbines (Axial Flow Reaction Turbines)
	23.1 Introduction
	23.2 Propeller and Kaplan Turbines
		23.2.1 Governing of Kaplan Turbine
	23.3 Working Proportions of Kaplan and Propeller Turbines
	23.4 Difference Between Francis and Kaplan Turbines
	23.5 Draft Tube
		23.5.1 Types of Draft Tubes
		23.5.2 Draft Tube Theory
		23.5.3 Efficiency of Draft Tube
	23.6 Cavitation in Turbines
	23.7 New Types of Turbines
		23.7.1 Deriaz or Diagonal Turbine
		23.7.2 Tubular Turbine
		23.7.3 Bulb Turbine
	Summary • Multiple-choice Questions • Review Questions • Problems
24 Performances of Hydraulic Turbines
	24.1 Introduction
	24.2 Unit Quantities
		24.2.1 Unit Speed
		24.2.2 Unit Discharge
		24.2.3 Unit Power
		24.2.4 Use of Unit Quantities
	24.3 Specific Speed
		24.3.1 Significance of Specific Speed
	24.4 Suction Specific Speed
	24.5 Specific Speed in Terms of Known Coefficients
		24.5.1 Specific Speed of Pelton Turbine
		24.5.2 Specific Speed of Francis Turbine
		24.5.3 Specific Speed of Kaplan and Propeller Turbines
	24.6 Model Relationship and Testing of Turbines
		24.6.1 Head Coefficient
		24.6.2 Capacity or Flow Coefficient
		24.6.3 Power Coefficient
		24.6.4 Model Testing of Turbines
		24.6.5 Scale Effect
	24.7 Characteristic Curves
		24.7.1 Main Characteristic Curves (or Constant Head Characteristic Curves)
		24.7.2 Operating Characteristic Curves (or Constant Speed Characteristic Curves)
		24.7.3 Muschel Curves (or Constant Efficiency Curves or Iso-efficiency Curves)
	24.8 Selection of Turbines
	24.9 Surge Tanks
		24.9.1 Types of Surge Tanks
	Summary • Multiple-choice Questions • Review Questions • Problems
25 Centrifugal Pumps
	25.1 Introduction
	25.2 Brief Historical Development of Centrifugal Pumps
	25.3 Classification of Pumps
		25.3.1 Rotodynamic Pumps (or Dynamic Pressure Pumps or Rotary Pumps)
		25.3.2 Positive Displacement Pumps
		25.3.3 Classification of Centrifugal Pumps
	25.4 Construction and Working of Centrifugal Pumps
		25.4.1 Main Parts of a Centrifugal Pump
		25.4.2 Working of a Centrifugal Pump
		25.4.3 Priming Devices
	25.5 Velocity Triangles and Work Done by Centrifugal Pump
	25.6 Head of a Centrifugal Pump
	25.7 Pressure Rise in the Impeller
	25.8 Losses, Power and Efficiencies of Centrifugal Pumps
		25.8.1 Losses in Centrifugal Pumps
		25.8.2 Power of Centrifugal Pumps
		25.8.3 Efficiencies of Centrifugal Pumps
	25.9 Effect of Outlet Vane Angle on Manometric Efficiency
	25.10 Effect of Number of Vanes of Impeller on Head and Efficiency
	25.11 Slip Factor
	25.12 Loss of Head Due to Reduced or Increased Flow
	25.13 Minimum Starting Speed
	25.14 Design Considerations
	25.15 Multistage Pumps
	25.16 Specific Speed of Centrifugal Pumps
	25.17 Model Testing of Centrifugal Pumps
	25.18 Performance Characteristics of Centrifugal Pumps
		25.18.1 Main Characteristic Curves
		25.18.2 Operating Characteristic Curves
		25.18.3 Constant Efficiency Curves (Muschel Curves)
		25.18.4 Constant Head and Constant Discharge Characteristics
	25.19 Maximum Suction Lift (or Suction Height)
	25.20 Net Positive Suction Head (NPSH)
	25.21 Cavitation in Centrifugal Pumps
	25.22 Troubles in Centrifugal Pumps and their Causes
	25.23 Axial Flow Pump
	25.24 Deep Well (Vertical Turbine Pump) and Submersible Pumps
	Summary • Multiple-choice Questions • Review Questions • Problems
26 Reciprocating Pumps
	26.1 Introduction
	26.2 Classification of Reciprocating Pumps
	26.3 Main Parts and Working of a Reciprocating Pump
		26.3.1 Main Parts of a Reciprocating Pump
		26.3.2 Working of a Single Acting Reciprocating Pump
		26.3.3 Discharge, Work Done and Power Required for Driving a Single Acting ­Reciprocating Pump
		26.3.4 Working of a Double Acting Reciprocating Pump
		26.3.5 Discharge, Work Done and Power Required for Driving a Double Acting Reciprocating Pump
	26.4 Coefficient of Discharge and Slip of Reciprocating Pump
		26.4.1 Coefficient of Discharge
		26.4.2 Slip of the Reciprocating Pump
		26.4.3 Negative Slip of the Reciprocating Pump
	26.5 Comparisons of Reciprocating and Centrifugal Pumps
	26.6 Effect of Acceleration of Piston on Velocity and Pressure in the Suction and Delivery Pipes
	26.7 Effect of Variation of Velocity in the Suction and Delivery Pipes
	26.8 Indicator Diagrams
		26.8.1 Theoretical Indicator Diagram
		26.8.2 Effect of Acceleration in Suction and Delivery Pipes on Indicator Diagram
		26.8.3 Maximum Speed of a Reciprocating Pump
		26.8.4 Effect of Friction in Suction and Delivery Pipes on Indicator Diagram
		26.8.5 Effect of Acceleration and Friction in Suction and Delivery Pipes on Indicator Diagram
	26.9 Air Vessels
	26.10 Theoretical Analysis of Air Vessels
		26.10.1 Water Flow Rate In and Out of Air Vessel
		26.10.2 Pressure Heads in the Cylinder During Suction Stroke of a Reciprocating Pump with Air Vessel
		26.10.3 Pressure Heads in the Cylinder During Delivery Stroke of a Reciprocating Pump with Air Vessel
		26.10.4 Work Done by a Reciprocating Pump with Air Vessel and Its Effect on ­Indicator Diagram
		26.10.5 Maximum Speed of a Reciprocating Pump with Air Vessel
		26.10.6 Work Saved Against Friction by Fitting Air Vessel
	26.11 Characteristic Curves of a Reciprocating Pump
	26.12 Rotary Positive Displacement Pumps
		26.12.1 Vane Pump
		26.12.2 Lobe Pump
		26.12.3 Axial Piston Pump
		26.12.4 Gear Pump
		26.12.5 Screw Pumps
		26.12.6 Radial Piston Pump
	Summary • Multiple-choice Questions • Review Questions • Problems
27 Hydraulic Systems
	27.1 Introduction
	27.2 Hydraulic Press
		27.2.1 Working Principle
		27.2.2 Actual Hydraulic Press
		27.2.3 Applications
	27.3 Hydraulic Accumulator
		27.3.1 Simple Hydraulic Accumulator
		27.3.2 Capacity of Accumulator
		27.3.3 Differential Hydraulic Accumulator
	27.4 Hydraulic Intensifier
	27.5 Hydraulic Ram
	27.6 Hydraulic Lift
		27.6.1 Direct Acting Hydraulic Lift
		27.6.2 Suspended Hydraulic Lift
	27.7 Hydraulic Crane
	27.8 Hydraulic Coupling
	27.9 Hydraulic Torque Converter
	27.10 Air Lift Pump
	27.11 Jet Pump
	27.12 External Gear Pump
	Summary • Multiple-choice Questions • Review Questions • Problems
Index




نظرات کاربران