دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Qiwei Wang (editor)
سری: Oil and Gas Chemistry Management Series, Volume One
ISBN (شابک) : 0128227214, 9780128227213
ناشر: Gulf Professional Publishing
سال نشر: 2021
تعداد صفحات: 484
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Fluid Chemistry, Drilling and Completion (Volume One) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شیمی سیالات، حفاری و تکمیل (جلد اول) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شیمی سیالات، حفاری و تکمیل، آخرین نسخه از سری مدیریت شیمی نفت و گاز که تمامی بخشهای مواد شیمیایی نفت و گاز (از حفاری تا تولید، پردازش، ذخیرهسازی و حمل و نقل) را پوشش میدهد. اصول اساسی میدان نفتی شیمیایی را ارائه می دهد و در عین حال آخرین پیشرفت های تحقیقاتی و راه حل های عملی را نیز پوشش می دهد. این کتاب که بر اساس نوع مواد شیمیایی سازماندهی شده است، به مهندسان اجازه می دهد تا به طور کامل درک کنند که چگونه به طور مؤثر مسائل شیمی را کنترل کنند، تصمیمات درستی بگیرند و چالش ها را کاهش دهند. بخشها نمونهبرداری از چالهها، خصوصیات نفت خام، مانند خواص اثر انگشت، تفسیر دادهها، مواد شیمیایی مخصوص کنترل اتلاف سیال، و مواد شیمیایی تحریک ماتریس را پوشش میدهند.
این کتاب که توسط فهرستی از متخصصان مشارکتکننده از دانشگاه و صنعت پشتیبانی میشود، مرجع ضروری است که عملیاتهای شیمی نفت را از تئوری به برنامههای ایمنتر و مقرونبهصرفهتر متصل میکند.
Fluid Chemistry, Drilling and Completion, the latest release in the Oil and Gas Chemistry Management series that covers all sectors of oil and gas chemicals (from drilling to production, processing, storage and transportation), delivers critical chemical oilfield basics while also covering the latest research developments and practical solutions. Organized by type of chemical, the book allows engineers to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges. Sections cover downhole sampling, crude oil characterization, such as fingerprinting properties, data interpretation, chemicals specific to fluid loss control, and matrix stimulation chemicals.
Supported by a list of contributing experts from both academia and industry, the book provides a necessary reference that bridges petroleum chemistry operations from theory, to safer, cost-effective applications.
Cover Fluid Chemistry, Drilling and Completion Copyright Contents List of contributors 1 Reservoir fluid geodynamics 1.1 Introduction 1.2 Reservoir fluid geodynamics 1.2.1 Asphaltene science 1.2.1.1 AFM and STM molecular imaging of asphaltenes 1.2.1.2 AFM and STM images of diverse asphaltenes 1.2.1.3 Asphaltene gradients in reservoirs 1.2.2 Ora intelligent wireline formation testing platform and DFA 1.3 RFG oilfield case studies 1.3.1 RFG applied to a light oil reservoir 1.3.1.1 RFG processes in this reservoir 1.3.2 RFG applied to a black oil field 1.3.2.1 RFG processes in this reservoir 1.4 RFG workflow 1.5 Conclusions Nomenclature References 2 Sampling petroleum fluids 2.1 Introduction 2.1.1 From upstream to downstream 2.1.2 Sampling types—the short list 2.1.3 Defining reservoir type 2.1.4 Fluid initialization 2.1.5 In situ-representative versus reservoir representative samples 2.1.6 Developing PVT models 2.1.6.1 Why do we need PVT data? 2.1.6.2 How do we get PVT data? 2.2 Sampling procedures and measurements 2.2.1 Sampling types 2.2.1.1 STO sampling 2.2.1.2 Separator sampling 2.2.1.3 Conventional Bottomhole sampling 2.2.1.4 Openhole formation testing 2.2.2 How do we use samples? 2.2.2.1 Water samples 2.2.2.2 STO samples 2.2.2.3 Separator samples 2.2.3 Sampling standards 2.2.4 Compositional analyses 2.3 Sampling strategies 2.3.1 Balancing wish lists and costs 2.3.2 Discovery wells 2.3.3 Delineation wells 2.3.4 Production wells 2.3.5 EOR wells 2.3.6 Problem wells 2.3.7 Fluid system considerations 2.3.7.1 Saturated gas–oil systems 2.3.7.2 Near-saturated systems 2.3.7.3 Highly undersaturated systems 2.3.7.4 Compositionally grading systems 2.4 Special issues in sampling 2.4.1 Sample storage 2.4.2 Separator sampling 2.4.2.1 Liquid carryover in the gas wellstream 2.4.2.2 Isokinetic sampling 2.4.3 Using contaminated PVT samples 2.4.4 Wax, asphaltenes, scale, and hydrates 2.4.5 Mud gas sampling 2.4.6 Tight unconventionals 2.4.6.1 Recommended sampling strategy 2.4.6.2 PVT data 2.5 Conclusions Nomenclature References 3 Water chemistry 3.1 Introduction 3.2 Types of water samples 3.3 Water sampling and analysis 3.4 Water data evaluation 3.5 Water chemistry data interpretation and reconciliation 3.6 Factors that impact/change water chemistry 3.7 Field case examples of water chemistry application 3.7.1 Original oil in place (OOIP) estimate 3.7.2 Water source identification 3.7.3 Management of scale, corrosion, and other water-related production problems 3.7.4 Produced water chemistry surveillance and applications in shale and tight plays 3.8 Final remarks Nomenclature References 4 Drilling fluids 4.1 Introduction 4.2 Drilling fluid functions 4.2.1 Formation pressure management and wellbore stability–fluid density 4.2.2 Hole cleaning—fluid rheological properties 4.2.3 Seal permeable formations—fluid loss control and bridging 4.2.4 Reduce friction—fluid lubricity 4.2.5 Other functions 4.3 Drilling fluid types 4.4 Aqueous-based fluids 4.4.1 Water-based fluid additives 4.4.1.1 Weighting agents 4.4.1.2 Rheology modifiers 4.4.1.3 Fluid loss control additives 4.4.1.4 pH and corrosion control 4.4.1.5 Shale inhibitors 4.4.1.6 Thinners/dispersants 4.4.1.7 Lubricants 4.4.2 Water-based fluids types 4.4.2.1 Dispersed water-based fluids 4.4.2.2 Low-solids, nondispersed water-based fluids 4.5 Nonaqueous fluids 4.5.1 Nonaqueous fluids additives 4.5.1.1 Weighting agents 4.5.1.2 Emulsifiers and wetting agents 4.5.1.3 Base oil 4.5.1.4 Rheology modifiers 4.5.1.5 Shale inhibitors 4.5.1.6 Fluid loss control additives 4.5.1.7 pH and corrosion control 4.5.1.8 Lubricants 4.5.1.9 Thinners/dispersants 4.5.2 Nonaqueous fluid types 4.5.2.1 Conventional nonaqueous fluids 4.5.2.2 High-performance nonaqueous fluids 4.6 Reservoir drilling fluids 4.6.1 Reservoir drilling fluid additives 4.6.1.1 Weighting agents 4.6.1.2 Filtration control (bridging) 4.6.1.3 Viscosifiers 4.6.1.4 Shale inhibition 4.6.1.5 Lubricants 4.6.1.6 Surfactants 4.6.1.7 pH and corrosion control 4.7 Conclusion Nomenclature References 5 Cementing additives 5.1 Introduction 5.2 Cement basics 5.2.1 Chemical notation 5.2.2 Portland cement chemistry 5.2.3 Hydration of Portland cement 5.2.3.1 Silicate phases 5.2.3.1.1 Metastable barrier hypothesis 5.2.3.1.2 Slow dissolution step hypothesis 5.2.3.2 Aluminates 5.2.3.3 Portland cement 5.2.3.3.1 Chemical shrinkage 5.2.4 Interparticle interactions 5.2.5 Application to well cements 5.3 Slurry formulation 5.3.1 Temperature 5.3.2 Slurry density 5.3.2.1 Changing the water-to-cement ratio 5.3.2.2 Including density adjusting additives 5.3.2.3 Foaming 5.3.2.4 Extenders 5.3.2.4.1 Bentonite 5.3.2.4.2 Sodium silicate 5.3.2.4.3 Pozzolans 5.3.2.5 Commercial lightweight cements 5.3.2.6 Density adjusting particles 5.3.3 Placement time 5.3.3.1 Retarders 5.3.3.1.1 Sugars 5.3.3.1.2 Lignosulfonates 5.3.3.1.3 Hydroxycarboxylic acids 5.3.3.1.4 Synthetic polymeric retarders 5.3.3.1.5 Organophosphonates 5.3.3.1.6 Borates 5.3.3.1.7 Phosphates 5.3.3.1.8 Silicates 5.3.3.1.9 Zinc oxide 5.3.3.1.10 Summary 5.3.3.2 Accelerators 5.3.3.2.1 Inorganic calcium salts 5.3.3.2.2 C–S–H seeds 5.3.3.2.3 Sodium silicate 5.3.3.2.4 Colloidal silica 5.3.4 Rheological properties 5.3.4.1 Properties under shear 5.3.4.2 Properties at rest 5.3.4.3 Dispersants 5.3.4.3.1 Sulfonated polyanionic resin dispersants 5.3.4.3.2 PCE dispersants 5.3.4.4 Antisettling agents 5.3.5 Fluid loss control 5.3.5.1 Filtration control and testing 5.3.5.2 “Particulate” fluid loss control additives 5.3.5.3 Soluble polymers as fluid loss control additives 5.3.5.4 “Combined mechanism” fluid loss control additives 5.3.6 Gas migration control 5.3.7 Other additives 5.3.7.1 Antifoam/defoamers 5.3.7.2 Foaming agents 5.3.7.3 Expansion additives 5.3.7.3.1 Delayed ettringite formation 5.3.7.3.2 Magnesium oxide 5.3.7.4 Special blends 5.3.7.4.1 CO2-resistant cement 5.3.7.4.2 Flexible cement systems 5.3.7.4.3 Self-healing cement systems 5.4 Summary 5.4.1 Polymers in cement formulations 5.4.2 Formulation approach Nomenclature Conversion Factors Acknowledgments References 6 Completion and workover fluids 6.1 Introduction 6.2 Types of completion brines 6.2.1 Halide brines (inorganic salts) 6.2.2 Formate brines (organic salts) 6.2.3 Potassium carbonate brine 6.3 Considerations for completion brine selection 6.3.1 Density requirement 6.3.2 Crystallization temperature 6.3.3 Hydrate inhibition 6.3.4 Compatibility with formation fluids 6.3.5 Compatibility with reservoir matrix 6.3.6 Corrosion of completion hardware 6.3.7 Environmental and safety 6.3.8 Cost 6.4 Completion brine properties measurement 6.4.1 Density 6.4.2 Iron content 6.4.3 Turbidity 6.4.4 Total suspended solids 6.5 Completion brine additives 6.5.1 Corrosion inhibitors 6.5.2 Lubricants 6.5.3 Viscosifier and fluid loss control 6.5.3.1 Hydroxyethylcellulose 6.5.3.2 Cross-linked HEC pills 6.5.3.3 Solid laden pills 6.5.3.4 Solid-sized salt pills 6.6 Conclusion Nomenclature References 7 Packer fluids 7.1 Introduction 7.2 Types of packer fluids 7.3 Solids-free brines 7.4 Packer fluid properties 7.4.1 Density 7.4.2 Crystallization temperature 7.4.3 Fluid clarity 7.4.4 Corrosion and corrosion inhibition 7.4.5 Fluid compatibility 7.5 Displacement 7.6 Safety 7.7 Summary Nomenclature References 8 Carbonate matrix stimulation 8.1 Introduction 8.2 Candidate selection 8.3 Chemical and physical processes in carbonate acidizing 8.3.1 Reactions of carbonate rocks with strong inorganic acids 8.3.2 Reactions of carbonate rocks with weak organic acids and chelants 8.3.3 Carbonate dissolution patterns: influence of transport and reaction 8.3.4 Wormhole growth models 8.3.5 Influence of mineralogy and porosity type 8.4 Stimulation fluid engineering 8.4.1 Single-phase retarders for HCl–carbonate reaction 8.4.2 Organic acids and chelants 8.4.3 Polymer and viscoelastic surfactant gelled acids 8.4.4 Emulsified acids 8.4.5 Foamed acids 8.5 Stimulation treatment design 8.5.1 Design challenges 8.5.1.1 Placement of acid in each pay zone 8.5.1.2 Fluid selection 8.5.1.3 Treatment simulation 8.5.2 Design optimization 8.6 Summary Nomenclature References 9 Sandstone matrix stimulation 9.1 Introduction 9.2 Formation damage mechanisms in sandstone reservoirs 9.2.1 Clay swelling 9.2.2 Fines migration 9.2.3 Inorganic scale deposition 9.2.4 Organic scale deposition 9.2.5 Damage during drilling and completion 9.2.6 Damage during reservoir stimulation 9.3 Acid types 9.3.1 Hydrofluoric acid and mud acid 9.3.1.1 Mud acid–mineral reaction stoichiometry 9.3.1.2 Acid–mineral reaction kinetics 9.3.1.3 Reservoir problems associated with conventional mud acid treatment 9.3.2 HCl acid 9.3.3 Retarded acids 9.3.4 Chelating agents 9.3.5 Organic acid mixtures 9.3.6 New developments 9.4 Acid additives 9.4.1 Corrosion inhibitor 9.4.2 Surfactants 9.4.3 Clay stabilizers 9.4.4 Iron control agents 9.4.5 Liquefied gases and foaming agents 9.5 Acid diversion and placement 9.5.1 Mechanical means 9.5.2 Chemical means 9.6 Laboratory testing techniques and equipment 9.6.1 Rock solubility tests 9.6.2 Core flooding experiments 9.6.3 Petrographic tests 9.6.4 Zeta potential measurement/surface charge 9.7 Treatment design 9.7.1 Preflush stage 9.7.2 Main flush stage 9.7.3 Postflush stage 9.8 Sandstone acidizing models 9.8.1 Conventional permeability models 9.8.2 Permeability model with mineralogy effect 9.8.2.1 Two-mineral model 9.8.2.2 Two-acid, three-mineral model 9.8.3 Precipitation models 9.9 Field treatments 9.10 Summary Nomenclature References 10 Acid fracturing stimulation 10.1 Petroleum engineering and geological aspects 10.2 Acid fracturing chemistry 10.3 Reaction kinetics 10.4 System of chemical additives in acid 10.4.1 Corrosion inhibitors 10.4.2 Iron-control agents 10.4.3 Hydrogen sulfide (H2S) scavenger 10.4.4 Antisludging agents 10.5 Acid fracturing process 10.5.1 Pickling the tubing 10.5.2 Injectivity assessment 10.5.3 Fracture breakdown 10.5.4 Main acid stimulation 10.5.5 Diversion 10.5.5.1 Solid diverters 10.5.5.2 Viscous fluid diverter 10.6 Acid fracturing examples 10.7 Conclusion Nomenclature References 11 Hydraulic fracturing stimulation 11.1 Introduction 11.2 Types of fracturing fluids 11.2.1 Aqueous-based fracturing fluids 11.2.1.1 Polymer-based linear fracturing fluid 11.2.1.1.1 Guar or guar derivatives 11.2.1.1.2 Xanthan gum 11.2.1.1.3 Cellulose derivatives 11.2.1.1.4 Polyacrylamides 11.2.1.2 Guar-based crosslinked fracturing fluid 11.2.1.2.1 Borate crosslinkers 11.2.1.2.2 Metal crosslinkers 11.2.1.3 Cellulose-based crosslinked fracturing fluid 11.2.1.4 Synthetic polymer-based crosslinked fracturing fluid 11.2.1.5 Viscoelastic surfactant fluid 11.2.2 Less-water to waterless fracturing fluids 11.2.2.1 Foam-based fracturing fluid 11.2.2.2 Oil-based fracturing fluid 11.2.2.3 LPG-based fracturing fluid 11.2.2.4 Liquid CO2-based fracturing fluid 11.2.2.5 N2-based fracturing fluid 11.3 Fluids additives 11.3.1 Biocides 11.3.2 Buffers and pH adjusting agents 11.3.3 Breakers 11.3.3.1 Oxidative breakers 11.3.3.2 Enzymes 11.3.3.3 pH-modifying agents 11.3.3.4 Decrosslinking agents 11.3.4 Clay stabilizers 11.3.5 Gel stabilizers 11.3.6 Surfactants 11.4 Advancements in thickening fluid chemistry 11.4.1 Pristine nanoparticles 11.4.2 Oligomeric boron-containing crosslinker for guar-based fluid 11.4.3 Polymeric multifunctional boronic acid crosslinker for guar-based fluid 11.4.4 Nanocrosslinker for guar-based fluid 11.4.5 Nanocrosslinker for AM-based fluid system 11.4.6 Polymer-treated degradable fibers 11.5 Alternative ways for proppant suspension 11.5.1 Preformed gel fluid/soft particle fluid 11.5.2 Self-suspending proppant 11.5.2.1 Self-suspending proppant in aqueous-based fluid 11.5.2.2 Self-suspending proppant in CO2-based fluid 11.5.3 Solid-free fracturing fluid 11.6 Recent trend and advancements in unconventional fracturing 11.6.1 Operational cost reduction through innovation and efficiency 11.6.2 High-viscosity friction reducer 11.6.3 Microproppant 11.6.4 Channel fracturing 11.6.5 Increasing SRV 11.6.5.1 Far-field diversion 11.6.5.2 Reactive components 11.7 Conclusions Nomenclature References Index