دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Reza Sadeghbeigi
سری:
ISBN (شابک) : 0128126639, 9780128126639
ناشر: Butterworth-Heinemann
سال نشر: 2019
تعداد صفحات: 361
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC، ویرایش چهارم، خوانندگان را قادر می سازد تا سودآوری و قابلیت اطمینان عملیات ترک خوردگی کاتالیستی سیال را با پوشش دادن همه موارد، به حداکثر برسانند. مراحل FCC، از جمله طراحی، بهره برداری، عیب یابی و بهینه سازی آنها. این شامل فصول ارزشمندی در مورد FCC Main Fractionator و Gas Plant و Process Engineering Tools است که ابزارهای مرتبطی را که برای بهینه سازی کامل فرآیندها و عملیات نیاز دارند در اختیار مهندسان قرار می دهد. این کتاب فنآوریها و فرآیندهایی را ارائه میکند که سودآوری و قابلیت اطمینان واحدهای FCC را به همراه درسهایی از 30 سال تجربه میدانی آقای صادقبیگی ارائه میکند.
این کتاب مرجع ارزشمندی برای مهندسین با تجربه است، اما همچنین میباشد. یک مرجع ایده آل برای کسانی که در حال توسعه مهارت ها و دانش خود هستند.
Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, Fourth Edition, enables readers to maximize the profitability and reliability of fluid catalytic cracking operations by covering all stages of FCC, including their design, operation, troubleshooting and optimization. It includes valuable chapters on FCC Main Fractionator and Gas Plant and Process Engineering Tools that provide engineers with the relevant tools they need to fully optimize processes and operations. This book presents technologies and processes that will improve the profitability and reliability of FCC units, along with lessons from Mr. Sadeghbeigi’s 30 years of field experience.
The book provides a valuable reference for experienced engineers, but is also an ideal reference for those who are developing their skills and knowledge base.
Cover Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units Copyright Dedication About the Author Preface to the Fourth Edition 1 . Fluid catalytic cracking process description—converter section 1.1 Feed preheat section 1.2 Converter section 1.2.1 Partial versus complete combustion 1.3 Regenerator flue gas section 1.3.1 Regenerator catalyst separation 1.3.2 Catalyst handling facilities Summary 2 . Process description main fractionator, gas plant and product treating sections 2.1 Main fractionator tower 2.2 Gas plant 2.2.1 Wet gas compressor 2.2.2 Primary absorber 2.2.3 Sponge oil or secondary absorber 2.2.4 Stripper or De-ethanizer 2.2.5 Debutanizer 2.2.6 Gasoline splitter 2.3 Water wash system 2.4 Treating facilities 2.4.1 Sour gas absorber 2.4.2 LPG treating 2.4.3 Caustic treating 2.5 Ultra low sulfur gasoline (ULSG) Summary 3 . Process control instrumentation 3.1 FCCU converter operating variables 3.2 Process control instrumentations 3.2.1 Basic supervisory control 3.3 Feed diversion/Shutdown matrix 3.4 Advance process control (APC) 3.4.1 Advantages of multivariable modeling and control 3.4.2 Disadvantages of multivariable modeling and control Summary 4 . FCC feed characterization 4.1 Hydrocarbon classification 4.1.1 Paraffins 4.1.2 Olefins 4.1.3 Naphthenes 4.1.4 Aromatics 4.2 Feedstock properties 4.2.1 °API gravity 4.2.2 Distillation 4.2.3 Aniline point 4.2.4 Refractive index 4.2.5 Bromine number and bromine index 4.2.6 Viscosity 4.3 Feedstock Impurities 4.3.1 Sulfur 4.3.2 Corbon Residue 4.3.3 Organic Nitrogen 4.4 Metals 4.4.1 Nickel (Ni) 4.4.2 Vanadium 4.4.3 Alkaline earth metals 4.4.4 Other metals Summary 4.5 Empirical correlations 4.5.1 K factor 4.5.2 TOTAL correlation 4.5.2 TOTAL correlation 4.5.3 n-d-M correlation 4.5.4 API correlation 4.6 Benefits of hydroprocessing Summary References 5 . FCC catalysts 5.1 Catalyst components 5.1.1 Zeolite 5.1.1.1 Zeolite structure 5.1.1.2 Zeolite chemistry 5.1.1.3 Zeolite types 5.1.1.4 Zeolite properties 5.1.1.5 Unit cell size (UCS) 5.1.1.6 Rare earth level and/or 5.1.1.7 Sodium content 5.2 Matrix 5.3 Filler and binder 5.4 Catalyst manufacturing techniques 5.4.1 Conventional zeolite (REY, REHY, HY) 5.4.2 USY zeolite 5.4.3 BASF process 5.5 Fresh catalyst physical and chemical properties 5.5.1 Particle size distribution (PSD) 5.5.2 Surface area (SA), m2/g 5.5.3 Sodium (Na), wt% 5.5.4 Rare earth (RE), wt% 5.6 Equilibrium catalyst analysis 5.6.1 E-cat chemical properties 5.6.1.1 Conversion (activity) 5.6.1.2 Coke factor (CF), gas factor (GF) 5.6.1.3 Surface area (SA), m2/g 5.6.1.4 Alumina (Al2O3) 5.6.1.5 Sodium (Na) 5.6.1.6 Nickel (Ni), vanadium (V), iron (Fe), copper (cu) 5.6.1.6 Nickel (Ni), vanadium (V), iron (Fe), copper (cu) 5.6.1.7 Carbon (C) 5.6.2 E-cat physical properties 5.6.2.1 Apparent bulk density (ABD), g/cc 5.6.2.2 Pore volume (PV), cc/g 5.6.2.3 Pore diameter (Å) 5.6.2.4 Particle size distribution (PSD) 5.7 Catalyst management 5.8 Catalyst evaluation Summary References 6 . Catalyst and feed additives 6.1 CO combustion promoter 6.2 SOX additive 6.3 NOx additive 6.4 ZSM-5 additive 6.5 Metal passivation 6.5.1 Antimony 6.6 Bottoms cracking additive Summary References 7 . Chemistry of FCC reactions 7.1 Thermal cracking 7.2 Catalytic cracking 7.2.1 FCC catalyst development 7.2.2 Impact of zeolites 7.2.3 Mechanism of catalytic cracking reactions 7.2.4 Cracking reactions 7.2.5 Isomerization reactions 7.2.6 Hydrogen transfer reactions 7.3 Other reactions 7.4 Thermodynamic aspects Summary References 8 . Unit monitoring and control 8.1 Material balance 8.2 Testing methods 8.2.1 Advantages of reaction mix sampling 8.2.2 Disadvantages of reaction mix sampling 8.3 Recommended procedures for conducting a test run 8.3.1 Prior to the test run 8.3.2 Data collection 8.3.3 Mass balance calculations 8.3.4 Analysis of results 8.4 Case study 8.4.1 The mass balance is performed as follows 8.4.2 Input and output streams in the overall mass balance 8.5 Coke yield calculations 8.5.1 Conversion to unit of weight, lb/h or kg/h 8.6 Component yield 8.6.1 Adjustment of gasoline and LCO cut points 8.6.2 Analyses of mass and heat balance data 8.7 Heat balance 8.7.1 Heat balance around stripper-regenerator 8.7.2 Reactor Heat Balance 8.8 Analysis of results 8.9 Pressure balance 8.9.1 Basic fluidization principals 8.9.2 Major components of the reactor-regenerator circuit 8.9.2.1 Regenerator catalyst hopper 8.9.2.2 Regenerated catalyst standpipe 8.9.2.3 Regenerated catalyst slide valve 8.9.2.4 Riser 8.9.2.5 Reactor-stripper 8.9.2.6 Spent catalyst standpipe 8.9.2.7 Spent catalyst slide or plug valve 8.9.3 Case study 8.9.4 Analysis of the findings Summary Reference 9 . Products and economics 9.1 FCC products 9.1.1 Dry gas 9.1.2 LPG 9.2 Gasoline 9.2.1 Gasoline yield 9.2.2 Gasoline quality 9.2.2.1 Octane 9.2.2.2 Benzene 9.2.2.3 Sulfur 9.3 Light cycle oil 9.3.1 LCO yield 9.3.2 LCO quality 9.3.2.1 Cetane Example 9.4 Heavy cycle oil and decanted oil 9.4.1 Decanted oil quality 9.5 Coke 9.6 FCC economics Summary References 10 . Effective project execution and management 10.1 Project management – FCCU Revamp 10.1.1 Pre-project 10.1.2 Process design 10.1.3 Detailed engineering 10.1.4 Preconstruction 10.1.5 Construction 10.1.6 Pre-commissioning and start-up 10.1.7 Post-project review 10.2 Useful tips for a successful project execution 11 . Refractory lining systems 11.1 Refractory materials 11.1.1 Cements 11.1.2 Aggregates 11.1.3 Additives 11.1.4 Fiber 11.2 Use of stainless steel fibers in refractory 11.3 Types of refractory 11.3.1 Bricks 11.3.2 Insulating firebrick 11.3.3 High alumina firebrick 11.3.4 Castables 11.3.4.1 Castables—product categories 11.3.4.1.1 Lightweight 11.3.4.1.2 Medium weight 11.3.4.1.3 Moderate density/erosion resistant 11.3.4.1.4 General purpose 11.3.4.1.5 High alumina 11.3.4.1.6 Erosion resistant 11.3.4.1.7 Extreme erosion resistant 11.3.4.1.8 Low cement 11.4 Mortar (refractory) 11.5 Plastic refractories/Ram mixes 11.6 Refractory physical properties 11.6.1 Bulk density 11.6.2 Strength 11.6.2.1 Modulus of rupture (psi, kg/cm2) 11.6.2.2 Cold crushing strength (psi, kg/cm2) 11.6.2.3 Permanent linear change (castables and plastic refractories) (%) 11.6.2.4 Thermal conductivity (BTU-in./ft2, h,°F, W/m2K) 11.6.2.5 Erosion (abrasion) (mL) 11.7 Anchors 11.7.1 Anchor types 11.7.1.1 Vee 11.7.1.2 Longhorns 11.7.1.3 Hex mesh 11.7.1.4 Hex cells 11.7.1.5 S-Bars 11.7.1.6 Curl AnchorⓇ 11.7.1.7 K-BarsⓇ 11.7.1.8 Chain link/picket fencing 11.7.1.9 Punch tabs (corner tabs) 11.7.1.10 Ring tabs 11.8 Dual layer anchoring 11.9 Anchor patterns 11.10 Designing refractory lining systems 11.10.1 Lining thickness 11.10.2 Refractory selection 11.10.3 Heat transfer 11.11 Choice of anchoring 11.12 Application techniques 11.12.1 Gunite 11.12.2 Wet gunning 11.12.3 Casting 11.12.4 Cast vibrating 11.12.5 Ramming 11.13 Plastic refractory 11.13.1 Ramming 11.13.2 Gunite 11.13.3 Hand packing 11.14 Quality control program 11.14.1 Written procedure 11.14.2 Compliance physical property data 11.14.3 Preshipment qualification testing 11.14.4 Mock-ups and crew qualification 11.14.5 Production sampling 11.14.6 Testing of production sampling 11.14.7 Mixing log sheets 11.14.8 Inspection 11.15 Dryout of refractory linings 11.15.1 Initial heating of refractory linings 11.15.2 Dryout of refractory linings during start-up of equipment 11.15.3 Subsequent heating of refractory lining systems 11.16 Examples of refractory systems in FCC units Summary Acknowledgment 12 . Process and mechanical design guidelines for FCC equipment 12.1 FCC catalyst quality 12.2 Higher-temperature operation 12.3 Refractory quality 12.4 More competitive refining industry 12.4.1 Major components of the reactor-regenerator circuit 12.4.1.1 Feed injection system 12.4.1.1.1 Process design considerations for feed nozzles 12.4.1.1.2 Catalyst lift zone design considerations 12.4.1.2 Riser and riser termination 12.4.1.3 Spent catalyst stripper 12.4.1.3.1 Catalyst flux 12.4.1.4 Standpipe system 12.4.1.4.1 Hopper design 12.4.1.4.2 Standpipe 12.4.1.4.3 Slide valve or plug valve 12.4.1.5 Air and spent catalyst distributor 12.4.1.6 Reactor and regenerator cyclone separators 12.4.1.7 Expansion joint Summary 13 . Troubleshooting 13.1 Several general guidelines for effective troubleshooting 13.2 Key aspects of FCC catalyst physical properties 13.3 Fundamentals of catalyst circulation 13.3.1 Factors hindering catalyst circulation 13.4 Catalyst losses 13.5 Coking/fouling 13.5.1 Troubleshooting steps 13.6 Increase in afterburn 13.7 Hot gas expanders 13.7.1 Troubleshooting steps 13.8 Flow reversal 13.8.1 Reversal prevention philosophy Summary 14 . Optimization and debottlenecking 14.1 Introduction 14.2 Approach to optimization 14.3 Improving FCC profitability through proven technologies 14.3.1 Apparent operating constraints 14.4 Debottlenecking 14.4.1 Feed circuit hydraulics 14.4.2 Typical feed preheat section 14.5 Reactor/regenerator structure 14.5.1 Mechanical limitations 14.5.1.1 Debottlenecking the reactor pressure/temperature 14.5.1.2 Debottlenecking the regenerator pressure/temperature 14.5.2 Riser termination device 14.5.2.1 UOP VSS system 14.5.2.2 KBR closed cyclone offerings 14.5.2.3 Technip Stone & Webster 14.5.2.4 CB&I Lummus’ direct coupled cyclones (DCC) features 14.5.3 Feed nozzles 14.5.4 Spent catalyst stripper 14.5.5 Air and spent catalyst distribution system 14.5.6 Debottlenecking catalyst circulation 14.5.6.1 Differential pressure alarm/shutdown 14.5.6.2 Standpipes 14.5.7 Debottlenecking combustion air 14.5.8 Regeneration 14.5.9 Flue gas system 14.5.10 FCC catalyst 14.6 Debottlenecking main fractionator and gas plant 14.6.1 Main Fractionator Tower Debottlenecking 14.6.2 Debottlenecking the wet gas compressor (WGC) 14.6.3 Improving performance of absorber and stripper columns 14.6.4 Debottlenecking debutanizer operation 14.7 Instrumentation 14.8 Utilities/off-sites 14.8.1 Tankage/blending 14.9 Steam/boiler feed water 14.10 Sour water/amine/sulfur plant 14.11 Relief system 14.12 Fuel system Summary 15 . Emissions 15.1 New Source Performance Standards 15.2 Maximum Achievable Control Technology (MACT II) 15.3 EPA consent decrees 15.4 Control options 15.4.1 CO emission 15.4.2 SOx emission 15.4.2.1 SO2-reducing additive 15.4.2.2 Flue gas scrubbing 15.5 Particulate matter 15.5.1 Third-stage/fourth-stage separator 15.5.2 Dry electrostatic precipitator 15.5.3 Sintered metal pulse-jet filtration 15.6 NOx 15.6.1 Feedstock quality 15.6.2 Operating conditions 15.6.3 Catalyst additives 15.6.4 Mechanical hardware 15.6.5 Selective catalytic reduction 15.6.6 Selective noncatalytic reduction 15.6.7 LoTOx™ technology Summary 16 . Residue and deep hydrotreated feedstock processing 16.1 Residue cracking 16.1.1 Things to consider when processing residue 16.1.2 Available design options to process residue 16.2 RFCC technology offerings 16.2.1 Technip Axens RFCC units 16.2.2 UOP RFCC units 16.3 Operational and mechanical reliability 16.4 Operational impacts of residue feedstocks 16.5 Processing “deep” hydrotreated feedstock Summary 17 . Biofuels 17.1 Greenhouse gas (GHG) emissions 17.2 United States Renewable Fuel Standard 17.3 Renewable identification numbers (RINs) 17.4 Ethanol (C2H5OH) 17.4.1 Ethanol feedstock 17.4.2 Cellulosic ethanol 17.4.2.1 Conclusion 17.5 Biodiesel 17.5.1 Biodiesel feedstock 17.5.2 Reaction chemistry 17.6 Renewable diesel 17.6.1 Feedstock 17.6.2 Technology providers 17.6.3 Typical operating conditions 17.6.4 Renewable diesel properties 17.6.5 Future of renewable diesel & biodiesel 17.7 Co-processing of biogenic feedstocks in FCC unit 17.8 Renewable jet fuel 17.8.1 Jet fuel specifications 17.8.2 Renewable jet fuel 17.8.3 Challenges of renewable 17.9 Pyrolysis 17.9.1 Pyrolysis Bio-oil properties References APPENDIX 1 - Temperature variation of liquid viscosity APPENDIX 2 - Correction to volumetric average boiling point APPENDIX 3 - Total correlations APPENDIX 4 - n–d–M correlations APPENDIX 5 - Estimation of molecular weight of petroleum oils from viscosity measurements APPENDIX 6 - Kinematic viscosity to Saybolt universal viscosity APPENDIX 7 - API correlations APPENDIX 8 - Definitions of fluidization terms APPENDIX 9 - Conversion of ASTM 50% point to TBP 50% point temperature APPENDIX 10 - Determination of TBP cut points from ASTM D86 APPENDIX 11 Nominal pipe sizes APPENDIX 12 - Conversion factors Glossary Index A B C D E F G H I J K L M N O P R S T U V W Z Back Cover