ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units

دانلود کتاب کتابچه راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC

Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units

مشخصات کتاب

Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units

ویرایش: 4 
نویسندگان:   
سری:  
ISBN (شابک) : 0128126639, 9780128126639 
ناشر: Butterworth-Heinemann 
سال نشر: 2019 
تعداد صفحات: 361 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 50,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتابچه راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتابچه راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC



راهنمای ترک خوردگی کاتالیستی سیال: راهنمای تخصصی برای عملیات عملی، طراحی و بهینه سازی واحدهای FCC، ویرایش چهارم، خوانندگان را قادر می سازد تا سودآوری و قابلیت اطمینان عملیات ترک خوردگی کاتالیستی سیال را با پوشش دادن همه موارد، به حداکثر برسانند. مراحل FCC، از جمله طراحی، بهره برداری، عیب یابی و بهینه سازی آنها. این شامل فصول ارزشمندی در مورد FCC Main Fractionator و Gas Plant و Process Engineering Tools است که ابزارهای مرتبطی را که برای بهینه سازی کامل فرآیندها و عملیات نیاز دارند در اختیار مهندسان قرار می دهد. این کتاب فن‌آوری‌ها و فرآیندهایی را ارائه می‌کند که سودآوری و قابلیت اطمینان واحدهای FCC را به همراه درس‌هایی از 30 سال تجربه میدانی آقای صادقبیگی ارائه می‌کند.

این کتاب مرجع ارزشمندی برای مهندسین با تجربه است، اما همچنین می‌باشد. یک مرجع ایده آل برای کسانی که در حال توسعه مهارت ها و دانش خود هستند.

  • نمونه‌های مرتبط و واقعی را ارائه می‌کند که مهندسان پتروشیمی را قادر می‌سازد تا به صرفه‌جویی واقعی دست یابند
  • شامل فصل‌های اختصاصی در مورد درس‌های آموخته‌شده از موارد عیب‌یابی انجام‌شده توسط نویسنده است
  • شامل بخش‌های مربوط به FCC Main Fractionator and Gas Plant
  • در سرتاسر واحدهای SI و Imperial را پوشش می‌دهد

توضیحاتی درمورد کتاب به خارجی

Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units, Fourth Edition, enables readers to maximize the profitability and reliability of fluid catalytic cracking operations by covering all stages of FCC, including their design, operation, troubleshooting and optimization. It includes valuable chapters on FCC Main Fractionator and Gas Plant and Process Engineering Tools that provide engineers with the relevant tools they need to fully optimize processes and operations. This book presents technologies and processes that will improve the profitability and reliability of FCC units, along with lessons from Mr. Sadeghbeigi’s 30 years of field experience.

The book provides a valuable reference for experienced engineers, but is also an ideal reference for those who are developing their skills and knowledge base.

  • Presents relevant, real world examples that enable petrochemical engineers to achieve real term savings
  • Contains dedicated chapters on lessons learned from troubleshooting cases carried out by the author
  • Includes sections on FCC Main Fractionator and Gas Plant
  • Covers both SI and Imperial Units throughout


فهرست مطالب

Cover
Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units
Copyright
Dedication
About the Author
Preface to the Fourth Edition
1 . Fluid catalytic cracking process description—converter section
	1.1 Feed preheat section
	1.2 Converter section
		1.2.1 Partial versus complete combustion
	1.3 Regenerator flue gas section
		1.3.1 Regenerator catalyst separation
		1.3.2 Catalyst handling facilities
	Summary
2 . Process description main fractionator, gas plant and product treating sections
	2.1 Main fractionator tower
	2.2 Gas plant
		2.2.1 Wet gas compressor
		2.2.2 Primary absorber
		2.2.3 Sponge oil or secondary absorber
		2.2.4 Stripper or De-ethanizer
		2.2.5 Debutanizer
		2.2.6 Gasoline splitter
	2.3 Water wash system
	2.4 Treating facilities
		2.4.1 Sour gas absorber
		2.4.2 LPG treating
		2.4.3 Caustic treating
	2.5 Ultra low sulfur gasoline (ULSG)
	Summary
3 . Process control instrumentation
	3.1 FCCU converter operating variables
	3.2 Process control instrumentations
		3.2.1 Basic supervisory control
	3.3 Feed diversion/Shutdown matrix
	3.4 Advance process control (APC)
		3.4.1 Advantages of multivariable modeling and control
		3.4.2 Disadvantages of multivariable modeling and control
	Summary
4 . FCC feed characterization
	4.1 Hydrocarbon classification
		4.1.1 Paraffins
		4.1.2 Olefins
		4.1.3 Naphthenes
		4.1.4 Aromatics
	4.2 Feedstock properties
		4.2.1 °API gravity
		4.2.2 Distillation
		4.2.3 Aniline point
		4.2.4 Refractive index
		4.2.5 Bromine number and bromine index
		4.2.6 Viscosity
	4.3 Feedstock Impurities
		4.3.1 Sulfur
		4.3.2 Corbon Residue
		4.3.3 Organic Nitrogen
	4.4 Metals
		4.4.1 Nickel (Ni)
		4.4.2 Vanadium
		4.4.3 Alkaline earth metals
		4.4.4 Other metals
			Summary
	4.5 Empirical correlations
		4.5.1 K factor
		4.5.2 TOTAL correlation
		4.5.2 TOTAL correlation
		4.5.3 n-d-M correlation
		4.5.4 API correlation
	4.6 Benefits of hydroprocessing
	Summary
	References
5 . FCC catalysts
	5.1 Catalyst components
		5.1.1 Zeolite
			5.1.1.1 Zeolite structure
			5.1.1.2 Zeolite chemistry
			5.1.1.3 Zeolite types
			5.1.1.4 Zeolite properties
			5.1.1.5 Unit cell size (UCS)
			5.1.1.6 Rare earth level and/or
			5.1.1.7 Sodium content
	5.2 Matrix
	5.3 Filler and binder
	5.4 Catalyst manufacturing techniques
		5.4.1 Conventional zeolite (REY, REHY, HY)
		5.4.2 USY zeolite
		5.4.3 BASF process
	5.5 Fresh catalyst physical and chemical properties
		5.5.1 Particle size distribution (PSD)
		5.5.2 Surface area (SA), m2/g
		5.5.3 Sodium (Na), wt%
		5.5.4 Rare earth (RE), wt%
	5.6 Equilibrium catalyst analysis
		5.6.1 E-cat chemical properties
			5.6.1.1 Conversion (activity)
			5.6.1.2 Coke factor (CF), gas factor (GF)
			5.6.1.3 Surface area (SA), m2/g
			5.6.1.4 Alumina (Al2O3)
			5.6.1.5 Sodium (Na)
			5.6.1.6 Nickel (Ni), vanadium (V), iron (Fe), copper (cu)
			5.6.1.6 Nickel (Ni), vanadium (V), iron (Fe), copper (cu)
			5.6.1.7 Carbon (C)
		5.6.2 E-cat physical properties
			5.6.2.1 Apparent bulk density (ABD), g/cc
			5.6.2.2 Pore volume (PV), cc/g
			5.6.2.3 Pore diameter (Å)
			5.6.2.4 Particle size distribution (PSD)
	5.7 Catalyst management
	5.8 Catalyst evaluation
	Summary
	References
6 . Catalyst and feed additives
	6.1 CO combustion promoter
	6.2 SOX additive
	6.3 NOx additive
	6.4 ZSM-5 additive
	6.5 Metal passivation
		6.5.1 Antimony
	6.6 Bottoms cracking additive
	Summary
	References
7 . Chemistry of FCC reactions
	7.1 Thermal cracking
	7.2 Catalytic cracking
		7.2.1 FCC catalyst development
		7.2.2 Impact of zeolites
		7.2.3 Mechanism of catalytic cracking reactions
		7.2.4 Cracking reactions
		7.2.5 Isomerization reactions
		7.2.6 Hydrogen transfer reactions
	7.3 Other reactions
	7.4 Thermodynamic aspects
	Summary
	References
8 . Unit monitoring and control
	8.1 Material balance
	8.2 Testing methods
		8.2.1 Advantages of reaction mix sampling
		8.2.2 Disadvantages of reaction mix sampling
	8.3 Recommended procedures for conducting a test run
		8.3.1 Prior to the test run
		8.3.2 Data collection
		8.3.3 Mass balance calculations
		8.3.4 Analysis of results
	8.4 Case study
		8.4.1 The mass balance is performed as follows
		8.4.2 Input and output streams in the overall mass balance
	8.5 Coke yield calculations
		8.5.1 Conversion to unit of weight, lb/h or kg/h
	8.6 Component yield
		8.6.1 Adjustment of gasoline and LCO cut points
		8.6.2 Analyses of mass and heat balance data
	8.7 Heat balance
		8.7.1 Heat balance around stripper-regenerator
		8.7.2 Reactor Heat Balance
	8.8 Analysis of results
	8.9 Pressure balance
		8.9.1 Basic fluidization principals
		8.9.2 Major components of the reactor-regenerator circuit
			8.9.2.1 Regenerator catalyst hopper
			8.9.2.2 Regenerated catalyst standpipe
			8.9.2.3 Regenerated catalyst slide valve
			8.9.2.4 Riser
			8.9.2.5 Reactor-stripper
			8.9.2.6 Spent catalyst standpipe
			8.9.2.7 Spent catalyst slide or plug valve
		8.9.3 Case study
		8.9.4 Analysis of the findings
	Summary
	Reference
9 . Products and economics
	9.1 FCC products
		9.1.1 Dry gas
		9.1.2 LPG
	9.2 Gasoline
		9.2.1 Gasoline yield
		9.2.2 Gasoline quality
			9.2.2.1 Octane
			9.2.2.2 Benzene
			9.2.2.3 Sulfur
	9.3 Light cycle oil
		9.3.1 LCO yield
		9.3.2 LCO quality
			9.3.2.1 Cetane
			Example
	9.4 Heavy cycle oil and decanted oil
		9.4.1 Decanted oil quality
	9.5 Coke
	9.6 FCC economics
	Summary
	References
10 . Effective project execution and management
	10.1 Project management – FCCU Revamp
		10.1.1 Pre-project
		10.1.2 Process design
		10.1.3 Detailed engineering
		10.1.4 Preconstruction
		10.1.5 Construction
		10.1.6 Pre-commissioning and start-up
		10.1.7 Post-project review
	10.2 Useful tips for a successful project execution
11 . Refractory lining systems
	11.1 Refractory materials
		11.1.1 Cements
		11.1.2 Aggregates
		11.1.3 Additives
		11.1.4 Fiber
	11.2 Use of stainless steel fibers in refractory
	11.3 Types of refractory
		11.3.1 Bricks
		11.3.2 Insulating firebrick
		11.3.3 High alumina firebrick
		11.3.4 Castables
			11.3.4.1 Castables—product categories
				11.3.4.1.1 Lightweight
				11.3.4.1.2 Medium weight
				11.3.4.1.3 Moderate density/erosion resistant
				11.3.4.1.4 General purpose
				11.3.4.1.5 High alumina
				11.3.4.1.6 Erosion resistant
				11.3.4.1.7 Extreme erosion resistant
				11.3.4.1.8 Low cement
	11.4 Mortar (refractory)
	11.5 Plastic refractories/Ram mixes
	11.6 Refractory physical properties
		11.6.1 Bulk density
		11.6.2 Strength
			11.6.2.1 Modulus of rupture (psi, kg/cm2)
			11.6.2.2 Cold crushing strength (psi, kg/cm2)
			11.6.2.3 Permanent linear change (castables and plastic refractories) (%)
			11.6.2.4 Thermal conductivity (BTU-in./ft2, h,°F, W/m2K)
			11.6.2.5 Erosion (abrasion) (mL)
	11.7 Anchors
		11.7.1 Anchor types
			11.7.1.1 Vee
			11.7.1.2 Longhorns
			11.7.1.3 Hex mesh
			11.7.1.4 Hex cells
			11.7.1.5 S-Bars
			11.7.1.6 Curl AnchorⓇ
			11.7.1.7 K-BarsⓇ
			11.7.1.8 Chain link/picket fencing
			11.7.1.9 Punch tabs (corner tabs)
			11.7.1.10 Ring tabs
	11.8 Dual layer anchoring
	11.9 Anchor patterns
	11.10 Designing refractory lining systems
		11.10.1 Lining thickness
		11.10.2 Refractory selection
		11.10.3 Heat transfer
	11.11 Choice of anchoring
	11.12 Application techniques
		11.12.1 Gunite
		11.12.2 Wet gunning
		11.12.3 Casting
		11.12.4 Cast vibrating
		11.12.5 Ramming
	11.13 Plastic refractory
		11.13.1 Ramming
		11.13.2 Gunite
		11.13.3 Hand packing
	11.14 Quality control program
		11.14.1 Written procedure
		11.14.2 Compliance physical property data
		11.14.3 Preshipment qualification testing
		11.14.4 Mock-ups and crew qualification
		11.14.5 Production sampling
		11.14.6 Testing of production sampling
		11.14.7 Mixing log sheets
		11.14.8 Inspection
	11.15 Dryout of refractory linings
		11.15.1 Initial heating of refractory linings
		11.15.2 Dryout of refractory linings during start-up of equipment
		11.15.3 Subsequent heating of refractory lining systems
	11.16 Examples of refractory systems in FCC units
	Summary
	Acknowledgment
12 . Process and mechanical design guidelines for FCC equipment
	12.1 FCC catalyst quality
	12.2 Higher-temperature operation
	12.3 Refractory quality
	12.4 More competitive refining industry
		12.4.1 Major components of the reactor-regenerator circuit
			12.4.1.1 Feed injection system
				12.4.1.1.1 Process design considerations for feed nozzles
				12.4.1.1.2 Catalyst lift zone design considerations
			12.4.1.2 Riser and riser termination
			12.4.1.3 Spent catalyst stripper
				12.4.1.3.1 Catalyst flux
			12.4.1.4 Standpipe system
				12.4.1.4.1 Hopper design
				12.4.1.4.2 Standpipe
				12.4.1.4.3 Slide valve or plug valve
			12.4.1.5 Air and spent catalyst distributor
			12.4.1.6 Reactor and regenerator cyclone separators
			12.4.1.7 Expansion joint
	Summary
13 . Troubleshooting
	13.1 Several general guidelines for effective troubleshooting
	13.2 Key aspects of FCC catalyst physical properties
	13.3 Fundamentals of catalyst circulation
		13.3.1 Factors hindering catalyst circulation
	13.4 Catalyst losses
	13.5 Coking/fouling
		13.5.1 Troubleshooting steps
	13.6 Increase in afterburn
	13.7 Hot gas expanders
		13.7.1 Troubleshooting steps
	13.8 Flow reversal
		13.8.1 Reversal prevention philosophy
	Summary
14 . Optimization and debottlenecking
	14.1 Introduction
	14.2 Approach to optimization
	14.3 Improving FCC profitability through proven technologies
		14.3.1 Apparent operating constraints
	14.4 Debottlenecking
		14.4.1 Feed circuit hydraulics
		14.4.2 Typical feed preheat section
	14.5 Reactor/regenerator structure
		14.5.1 Mechanical limitations
			14.5.1.1 Debottlenecking the reactor pressure/temperature
			14.5.1.2 Debottlenecking the regenerator pressure/temperature
		14.5.2 Riser termination device
			14.5.2.1 UOP VSS system
			14.5.2.2 KBR closed cyclone offerings
			14.5.2.3 Technip Stone & Webster
			14.5.2.4 CB&I Lummus’ direct coupled cyclones (DCC) features
		14.5.3 Feed nozzles
		14.5.4 Spent catalyst stripper
		14.5.5 Air and spent catalyst distribution system
		14.5.6 Debottlenecking catalyst circulation
			14.5.6.1 Differential pressure alarm/shutdown
			14.5.6.2 Standpipes
		14.5.7 Debottlenecking combustion air
		14.5.8 Regeneration
		14.5.9 Flue gas system
		14.5.10 FCC catalyst
	14.6 Debottlenecking main fractionator and gas plant
		14.6.1 Main Fractionator Tower Debottlenecking
		14.6.2 Debottlenecking the wet gas compressor (WGC)
		14.6.3 Improving performance of absorber and stripper columns
		14.6.4 Debottlenecking debutanizer operation
	14.7 Instrumentation
	14.8 Utilities/off-sites
		14.8.1 Tankage/blending
	14.9 Steam/boiler feed water
	14.10 Sour water/amine/sulfur plant
	14.11 Relief system
	14.12 Fuel system
	Summary
15 . Emissions
	15.1 New Source Performance Standards
	15.2 Maximum Achievable Control Technology (MACT II)
	15.3 EPA consent decrees
	15.4 Control options
		15.4.1 CO emission
		15.4.2 SOx emission
			15.4.2.1 SO2-reducing additive
			15.4.2.2 Flue gas scrubbing
	15.5 Particulate matter
		15.5.1 Third-stage/fourth-stage separator
		15.5.2 Dry electrostatic precipitator
		15.5.3 Sintered metal pulse-jet filtration
	15.6 NOx
		15.6.1 Feedstock quality
		15.6.2 Operating conditions
		15.6.3 Catalyst additives
		15.6.4 Mechanical hardware
		15.6.5 Selective catalytic reduction
		15.6.6 Selective noncatalytic reduction
		15.6.7 LoTOx™ technology
	Summary
16 . Residue and deep hydrotreated feedstock processing
	16.1 Residue cracking
		16.1.1 Things to consider when processing residue
		16.1.2 Available design options to process residue
	16.2 RFCC technology offerings
		16.2.1 Technip Axens RFCC units
		16.2.2 UOP RFCC units
	16.3 Operational and mechanical reliability
	16.4 Operational impacts of residue feedstocks
	16.5 Processing “deep” hydrotreated feedstock
	Summary
17 . Biofuels
	17.1 Greenhouse gas (GHG) emissions
	17.2 United States Renewable Fuel Standard
	17.3 Renewable identification numbers (RINs)
	17.4 Ethanol (C2H5OH)
		17.4.1 Ethanol feedstock
		17.4.2 Cellulosic ethanol
			17.4.2.1 Conclusion
	17.5 Biodiesel
		17.5.1 Biodiesel feedstock
		17.5.2 Reaction chemistry
	17.6 Renewable diesel
		17.6.1 Feedstock
		17.6.2 Technology providers
		17.6.3 Typical operating conditions
		17.6.4 Renewable diesel properties
		17.6.5 Future of renewable diesel & biodiesel
	17.7 Co-processing of biogenic feedstocks in FCC unit
	17.8 Renewable jet fuel
		17.8.1 Jet fuel specifications
		17.8.2 Renewable jet fuel
		17.8.3 Challenges of renewable
	17.9 Pyrolysis
		17.9.1 Pyrolysis Bio-oil properties
	References
APPENDIX
1 - Temperature variation of liquid viscosity
APPENDIX
2 - Correction to volumetric average boiling point
APPENDIX
3 - Total correlations
APPENDIX
4 - n–d–M correlations
APPENDIX
5 - Estimation of molecular weight of petroleum oils from viscosity measurements
APPENDIX
6 - Kinematic viscosity to Saybolt universal viscosity
APPENDIX
7 - API correlations
APPENDIX
8 - Definitions of fluidization terms
APPENDIX
9 - Conversion of ASTM 50% point to TBP 50% point temperature
APPENDIX
10 - Determination of TBP cut points from ASTM D86
APPENDIX
11 Nominal pipe sizes
APPENDIX
12 - Conversion factors
Glossary
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z
Back Cover




نظرات کاربران