ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fluent Python: Clear, Concise, and Effective Programming

دانلود کتاب Python روان: برنامه نویسی واضح، مختصر و موثر

Fluent Python: Clear, Concise, and Effective Programming

مشخصات کتاب

Fluent Python: Clear, Concise, and Effective Programming

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 1492056359, 9781492056355 
ناشر: O'Reilly Media 
سال نشر: 2022 
تعداد صفحات: 1012 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 Mb 

قیمت کتاب (تومان) : 40,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Fluent Python: Clear, Concise, and Effective Programming به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Python روان: برنامه نویسی واضح، مختصر و موثر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Python روان: برنامه نویسی واضح، مختصر و موثر



زمان را برای خم کردن پایتون برای مطابقت با الگوهایی که به زبان‌های دیگر آموخته‌اید تلف نکنید. سادگی پایتون به شما امکان می دهد به سرعت سازنده شوید، اما اغلب به این معنی است که از همه چیزهایی که زبان ارائه می دهد استفاده نمی کنید. با نسخه به روز شده این راهنمای عملی، نحوه نوشتن کد موثر و مدرن پایتون 3 را با استفاده از بهترین ایده های آن یاد خواهید گرفت.

ویژگی‌های اصطلاحی Python 3 را فراتر از تجربه گذشته خود کشف و به کار ببرید. نویسنده Luciano Ramalho شما را از طریق ویژگی‌ها و کتابخانه‌های زبان اصلی پایتون راهنمایی می‌کند و به شما می‌آموزد که چگونه کد خود را کوتاه‌تر، سریع‌تر و خواناتر کنید.

این نسخه جدید با به‌روزرسانی‌های عمده در سراسر این کتاب دارای پنج بخش است که به عنوان پنج کتاب کوتاه در کتاب کار می‌کنند:

  • ساختارهای داده: توالی‌ها، دستورات، مجموعه‌ها، یونیکد و کلاس‌های داده
  • عملکرد اشیاء: توابع درجه یک، الگوهای طراحی مرتبط، و نکات نوع در اعلان تابع
  • اصطلاحات شی گرا: ترکیب، وراثت، ترکیب، رابط‌ها، بارگذاری بیش از حد اپراتور، پروتکل‌ها، و انواع استاتیک بیشتر
  • جریان کنترل: span> مدیران زمینه، مولدها، برنامه‌های مشترک، همگام‌سازی/انتظار، و مجموعه‌های رشته/فرآیند
  • فرابرنامه‌نویسی: ویژگی‌ها، توصیفگرهای ویژگی، تزئین‌کننده‌های کلاس، و قلاب‌های فرابرنامه‌نویسی کلاس جدید که جایگزین یا ساده‌سازی متاکلاس‌ها می‌شوند

توضیحاتی درمورد کتاب به خارجی

Don't waste time bending Python to fit patterns you've learned in other languages. Python's simplicity lets you become productive quickly, but often this means you aren't using everything the language has to offer. With the updated edition of this hands-on guide, you'll learn how to write effective, modern Python 3 code by leveraging its best ideas.

Discover and apply idiomatic Python 3 features beyond your past experience. Author Luciano Ramalho guides you through Python's core language features and libraries and teaches you how to make your code shorter, faster, and more readable.

Complete with major updates throughout, this new edition features five parts that work as five short books within the book:

  • Data structures: Sequences, dicts, sets, Unicode, and data classes
  • Functions as objects: First-class functions, related design patterns, and type hints in function declarations
  • Object-oriented idioms: Composition, inheritance, mixins, interfaces, operator overloading, protocols, and more static types
  • Control flow: Context managers, generators, coroutines, async/await, and thread/process pools
  • Metaprogramming: Properties, attribute descriptors, class decorators, and new class metaprogramming hooks that replace or simplify metaclasses


فهرست مطالب

Cover
Copyright
Table of Contents
Preface
	Who This Book Is For
	Who This Book Is Not For
	Five Books in One
		How the Book Is Organized
	Hands-On Approach
	Soapbox: My Personal Perspective
	Companion Website: fluentpython.com
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
		Acknowledgments for the First Edition
Part I. Data Structures
	Chapter 1. The Python Data Model
		What’s New in This Chapter
		A Pythonic Card Deck
		How Special Methods Are Used
			Emulating Numeric Types
			String Representation
			Boolean Value of a Custom Type
			Collection API
		Overview of Special Methods
		Why len Is Not a Method
		Chapter Summary
		Further Reading
	Chapter 2. An Array of Sequences
		What’s New in This Chapter
		Overview of Built-In Sequences
		List Comprehensions and Generator Expressions
			List Comprehensions and Readability
			Listcomps Versus map and filter
			Cartesian Products
			Generator Expressions
		Tuples Are Not Just Immutable Lists
			Tuples as Records
			Tuples as Immutable Lists
			Comparing Tuple and List Methods
		Unpacking Sequences and Iterables
			Using * to Grab Excess Items
			Unpacking with * in Function Calls and Sequence Literals
			Nested Unpacking
		Pattern Matching with Sequences
			Pattern Matching Sequences in an Interpreter
		Slicing
			Why Slices and Ranges Exclude the Last Item
			Slice Objects
			Multidimensional Slicing and Ellipsis
			Assigning to Slices
		Using + and * with Sequences
			Building Lists of Lists
			Augmented Assignment with Sequences
			A += Assignment Puzzler
		list.sort Versus the sorted Built-In
		When a List Is Not the Answer
			Arrays
			Memory Views
			NumPy
			Deques and Other Queues
		Chapter Summary
		Further Reading
	Chapter 3. Dictionaries and Sets
		What’s New in This Chapter
		Modern dict Syntax
			dict Comprehensions
			Unpacking Mappings
			Merging Mappings with |
		Pattern Matching with Mappings
		Standard API of Mapping Types
			What Is Hashable
			Overview of Common Mapping Methods
			Inserting or Updating Mutable Values
		Automatic Handling of Missing Keys
			defaultdict: Another Take on Missing Keys
			The __missing__ Method
			Inconsistent Usage of __missing__ in the Standard Library
		Variations of dict
			collections.OrderedDict
			collections.ChainMap
			collections.Counter
			shelve.Shelf
			Subclassing UserDict Instead of dict
		Immutable Mappings
		Dictionary Views
		Practical Consequences of How dict Works
		Set Theory
			Set Literals
			Set Comprehensions
		Practical Consequences of How Sets Work
			Set Operations
		Set Operations on dict Views
		Chapter Summary
		Further Reading
	Chapter 4. Unicode Text Versus Bytes
		What’s New in This Chapter
		Character Issues
		Byte Essentials
		Basic Encoders/Decoders
		Understanding Encode/Decode Problems
			Coping with UnicodeEncodeError
			Coping with UnicodeDecodeError
			SyntaxError When Loading Modules with Unexpected Encoding
			How to Discover the Encoding of a Byte Sequence
			BOM: A Useful Gremlin
		Handling Text Files
			Beware of Encoding Defaults
		Normalizing Unicode for Reliable Comparisons
			Case Folding
			Utility Functions for Normalized Text Matching
			Extreme “Normalization”: Taking Out Diacritics
		Sorting Unicode Text
			Sorting with the Unicode Collation Algorithm
		The Unicode Database
			Finding Characters by Name
			Numeric Meaning of Characters
		Dual-Mode str and bytes APIs
			str Versus bytes in Regular Expressions
			str Versus bytes in os Functions
		Chapter Summary
		Further Reading
	Chapter 5. Data Class Builders
		What’s New in This Chapter
		Overview of Data Class Builders
			Main Features
		Classic Named Tuples
		Typed Named Tuples
		Type Hints 101
			No Runtime Effect
			Variable Annotation Syntax
			The Meaning of Variable Annotations
		More About @dataclass
			Field Options
			Post-init Processing
			Typed Class Attributes
			Initialization Variables That Are Not Fields
			@dataclass Example: Dublin Core Resource Record
		Data Class as a Code Smell
			Data Class as Scaffolding
			Data Class as Intermediate Representation
		Pattern Matching Class Instances
			Simple Class Patterns
			Keyword Class Patterns
			Positional Class Patterns
		Chapter Summary
		Further Reading
	Chapter 6. Object References, Mutability, and Recycling
		What’s New in This Chapter
		Variables Are Not Boxes
		Identity, Equality, and Aliases
			Choosing Between == and is
			The Relative Immutability of Tuples
		Copies Are Shallow by Default
			Deep and Shallow Copies of Arbitrary Objects
		Function Parameters as References
			Mutable Types as Parameter Defaults: Bad Idea
			Defensive Programming with Mutable Parameters
		del and Garbage Collection
		Tricks Python Plays with Immutables
		Chapter Summary
		Further Reading
Part II. Functions as Objects
	Chapter 7. Functions as First-Class Objects
		What’s New in This Chapter
		Treating a Function Like an Object
		Higher-Order Functions
			Modern Replacements for map, filter, and reduce
		Anonymous Functions
		The Nine Flavors of Callable Objects
		User-Defined Callable Types
		From Positional to Keyword-Only Parameters
			Positional-Only Parameters
		Packages for Functional Programming
			The operator Module
			Freezing Arguments with functools.partial
		Chapter Summary
		Further Reading
	Chapter 8. Type Hints in Functions
		What’s New in This Chapter
		About Gradual Typing
		Gradual Typing in Practice
			Starting with Mypy
			Making Mypy More Strict
			A Default Parameter Value
			Using None as a Default
		Types Are Defined by Supported Operations
		Types Usable in Annotations
			The Any Type
			Simple Types and Classes
			Optional and Union Types
			Generic Collections
			Tuple Types
			Generic Mappings
			Abstract Base Classes
			Iterable
			Parameterized Generics and TypeVar
			Static Protocols
			Callable
			NoReturn
		Annotating Positional Only and Variadic Parameters
		Imperfect Typing and Strong Testing
		Chapter Summary
		Further Reading
	Chapter 9. Decorators and Closures
		What’s New in This Chapter
		Decorators 101
		When Python Executes Decorators
		Registration Decorators
		Variable Scope Rules
		Closures
		The nonlocal Declaration
			Variable Lookup Logic
		Implementing a Simple Decorator
			How It Works
		Decorators in the Standard Library
			Memoization with functools.cache
			Using lru_cache
			Single Dispatch Generic Functions
		Parameterized Decorators
			A Parameterized Registration Decorator
			The Parameterized Clock Decorator
			A Class-Based Clock Decorator
		Chapter Summary
		Further Reading
	Chapter 10. Design Patterns with First-Class Functions
		What’s New in This Chapter
		Case Study: Refactoring Strategy
			Classic Strategy
			Function-Oriented Strategy
			Choosing the Best Strategy: Simple Approach
			Finding Strategies in a Module
		Decorator-Enhanced Strategy Pattern
		The Command Pattern
		Chapter Summary
		Further Reading
Part III. Classes and Protocols
	Chapter 11. A Pythonic Object
		What’s New in This Chapter
		Object Representations
		Vector Class Redux
		An Alternative Constructor
		classmethod Versus staticmethod
		Formatted Displays
		A Hashable Vector2d
		Supporting Positional Pattern Matching
		Complete Listing of Vector2d, Version 3
		Private and “Protected” Attributes in Python
		Saving Memory with __slots__
			Simple Measure of __slot__ Savings
			Summarizing the Issues with __slots__
		Overriding Class Attributes
		Chapter Summary
		Further Reading
	Chapter 12. Special Methods for Sequences
		What’s New in This Chapter
		Vector: A User-Defined Sequence Type
		Vector Take #1: Vector2d Compatible
		Protocols and Duck Typing
		Vector Take #2: A Sliceable Sequence
			How Slicing Works
			A Slice-Aware __getitem__
		Vector Take #3: Dynamic Attribute Access
		Vector Take #4: Hashing and a Faster ==
		Vector Take #5: Formatting
		Chapter Summary
		Further Reading
	Chapter 13. Interfaces, Protocols, and ABCs
		The Typing Map
		What’s New in This Chapter
		Two Kinds of Protocols
		Programming Ducks
			Python Digs Sequences
			Monkey Patching: Implementing a Protocol at Runtime
			Defensive Programming and “Fail Fast”
		Goose Typing
			Subclassing an ABC
			ABCs in the Standard Library
			Defining and Using an ABC
			ABC Syntax Details
			Subclassing an ABC
			A Virtual Subclass of an ABC
			Usage of register in Practice
			Structural Typing with ABCs
		Static Protocols
			The Typed double Function
			Runtime Checkable Static Protocols
			Limitations of Runtime Protocol Checks
			Supporting a Static Protocol
			Designing a Static Protocol
			Best Practices for Protocol Design
			Extending a Protocol
			The numbers ABCs and Numeric Protocols
		Chapter Summary
		Further Reading
	Chapter 14. Inheritance: For Better or for Worse
		What’s New in This Chapter
		The super() Function
		Subclassing Built-In Types Is Tricky
		Multiple Inheritance and Method Resolution Order
		Mixin Classes
			Case-Insensitive Mappings
		Multiple Inheritance in the Real World
			ABCs Are Mixins Too
			ThreadingMixIn and ForkingMixIn
			Django Generic Views Mixins
			Multiple Inheritance in Tkinter
		Coping with Inheritance
			Favor Object Composition over Class Inheritance
			Understand Why Inheritance Is Used in Each Case
			Make Interfaces Explicit with ABCs
			Use Explicit Mixins for Code Reuse
			Provide Aggregate Classes to Users
			Subclass Only Classes Designed for Subclassing
			Avoid Subclassing from Concrete Classes
			Tkinter: The Good, the Bad, and the Ugly
		Chapter Summary
		Further Reading
	Chapter 15. More About Type Hints
		What’s New in This Chapter
		Overloaded Signatures
			Max Overload
			Takeaways from Overloading max
		TypedDict
		Type Casting
		Reading Type Hints at Runtime
			Problems with Annotations at Runtime
			Dealing with the Problem
		Implementing a Generic Class
			Basic Jargon for Generic Types
		Variance
			An Invariant Dispenser
			A Covariant Dispenser
			A Contravariant Trash Can
			Variance Review
		Implementing a Generic Static Protocol
		Chapter Summary
		Further Reading
	Chapter 16. Operator Overloading
		What’s New in This Chapter
		Operator Overloading 101
		Unary Operators
		Overloading + for Vector Addition
		Overloading * for Scalar Multiplication
		Using @ as an Infix Operator
		Wrapping-Up Arithmetic Operators
		Rich Comparison Operators
		Augmented Assignment Operators
		Chapter Summary
		Further Reading
Part IV. Control Flow
	Chapter 17. Iterators, Generators, and Classic Coroutines
		What’s New in This Chapter
		A Sequence of Words
		Why Sequences Are Iterable: The iter Function
			Using iter with a Callable
		Iterables Versus Iterators
		Sentence Classes with __iter__
			Sentence Take #2: A Classic Iterator
			Don’t Make the Iterable an Iterator for Itself
			Sentence Take #3: A Generator Function
			How a Generator Works
		Lazy Sentences
			Sentence Take #4: Lazy Generator
			Sentence Take #5: Lazy Generator Expression
		When to Use Generator Expressions
		An Arithmetic Progression Generator
			Arithmetic Progression with itertools
		Generator Functions in the Standard Library
		Iterable Reducing Functions
		Subgenerators with yield from
			Reinventing chain
			Traversing a Tree
		Generic Iterable Types
		Classic Coroutines
			Example: Coroutine to Compute a Running Average
			Returning a Value from a Coroutine
			Generic Type Hints for Classic Coroutines
		Chapter Summary
		Further Reading
	Chapter 18. with, match, and else Blocks
		What’s New in This Chapter
		Context Managers and with Blocks
			The contextlib Utilities
			Using @contextmanager
		Pattern Matching in lis.py: A Case Study
			Scheme Syntax
			Imports and Types
			The Parser
			The Environment
			The REPL
			The Evaluator
			Procedure: A Class Implementing a Closure
			Using OR-patterns
		Do This, Then That: else Blocks Beyond if
		Chapter Summary
		Further Reading
	Chapter 19. Concurrency Models in Python
		What’s New in This Chapter
		The Big Picture
		A Bit of Jargon
			Processes, Threads, and Python’s Infamous GIL
		A Concurrent Hello World
			Spinner with Threads
			Spinner with Processes
			Spinner with Coroutines
			Supervisors Side-by-Side
		The Real Impact of the GIL
			Quick Quiz
		A Homegrown Process Pool
			Process-Based Solution
			Understanding the Elapsed Times
			Code for the Multicore Prime Checker
			Experimenting with More or Fewer Processes
			Thread-Based Nonsolution
		Python in the Multicore World
			System Administration
			Data Science
			Server-Side Web/Mobile Development
			WSGI Application Servers
			Distributed Task Queues
		Chapter Summary
		Further Reading
			Concurrency with Threads and Processes
			The GIL
			Concurrency Beyond the Standard Library
			Concurrency and Scalability Beyond Python
	Chapter 20. Concurrent Executors
		What’s New in This Chapter
		Concurrent Web Downloads
			A Sequential Download Script
			Downloading with concurrent.futures
			Where Are the Futures?
		Launching Processes with concurrent.futures
			Multicore Prime Checker Redux
		Experimenting with Executor.map
		Downloads with Progress Display and Error Handling
			Error Handling in the flags2 Examples
			Using futures.as_completed
		Chapter Summary
		Further Reading
	Chapter 21. Asynchronous Programming
		What’s New in This Chapter
		A Few Definitions
		An asyncio Example: Probing Domains
			Guido’s Trick to Read Asynchronous Code
		New Concept: Awaitable
		Downloading with asyncio and HTTPX
			The Secret of Native Coroutines: Humble Generators
			The All-or-Nothing Problem
		Asynchronous Context Managers
		Enhancing the asyncio Downloader
			Using asyncio.as_completed and a Thread
			Throttling Requests with a Semaphore
			Making Multiple Requests for Each Download
		Delegating Tasks to Executors
		Writing asyncio Servers
			A FastAPI Web Service
			An asyncio TCP Server
		Asynchronous Iteration and Asynchronous Iterables
			Asynchronous Generator Functions
			Async Comprehensions and Async Generator Expressions
		async Beyond asyncio: Curio
		Type Hinting Asynchronous Objects
		How Async Works and How It Doesn’t
			Running Circles Around Blocking Calls
			The Myth of I/O-Bound Systems
			Avoiding CPU-Bound Traps
		Chapter Summary
		Further Reading
Part V. Metaprogramming
	Chapter 22. Dynamic Attributes and Properties
		What’s New in This Chapter
		Data Wrangling with Dynamic Attributes
			Exploring JSON-Like Data with Dynamic Attributes
			The Invalid Attribute Name Problem
			Flexible Object Creation with __new__
		Computed Properties
			Step 1: Data-Driven Attribute Creation
			Step 2: Property to Retrieve a Linked Record
			Step 3: Property Overriding an Existing Attribute
			Step 4: Bespoke Property Cache
			Step 5: Caching Properties with functools
		Using a Property for Attribute Validation
			LineItem Take #1: Class for an Item in an Order
			LineItem Take #2: A Validating Property
		A Proper Look at Properties
			Properties Override Instance Attributes
			Property Documentation
		Coding a Property Factory
		Handling Attribute Deletion
		Essential Attributes and Functions for Attribute Handling
			Special Attributes that Affect Attribute Handling
			Built-In Functions for Attribute Handling
			Special Methods for Attribute Handling
		Chapter Summary
		Further Reading
	Chapter 23. Attribute Descriptors
		What’s New in This Chapter
		Descriptor Example: Attribute Validation
			LineItem Take #3: A Simple Descriptor
			LineItem Take #4: Automatic Naming of Storage Attributes
			LineItem Take #5: A New Descriptor Type
		Overriding Versus Nonoverriding Descriptors
			Overriding Descriptors
			Overriding Descriptor Without __get__
			Nonoverriding Descriptor
			Overwriting a Descriptor in the Class
		Methods Are Descriptors
		Descriptor Usage Tips
		Descriptor Docstring and Overriding Deletion
		Chapter Summary
		Further Reading
	Chapter 24. Class Metaprogramming
		What’s New in This Chapter
		Classes as Objects
		type: The Built-In Class Factory
		A Class Factory Function
		Introducing __init_subclass__
			Why __init_subclass__ Cannot Configure __slots__
		Enhancing Classes with a Class Decorator
		What Happens When: Import Time Versus Runtime
			Evaluation Time Experiments
		Metaclasses 101
			How a Metaclass Customizes a Class
			A Nice Metaclass Example
			Metaclass Evaluation Time Experiment
		A Metaclass Solution for Checked
		Metaclasses in the Real World
			Modern Features Simplify or Replace Metaclasses
			Metaclasses Are Stable Language Features
			A Class Can Only Have One Metaclass
			Metaclasses Should Be Implementation Details
		A Metaclass Hack with __prepare__
		Wrapping Up
		Chapter Summary
		Further Reading
Afterword
	Further Reading
Index
About the Author
Colophon




نظرات کاربران