دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Luciano Ramalho
سری:
ISBN (شابک) : 1492056359, 9781492056355
ناشر: O'Reilly Media
سال نشر: 2022
تعداد صفحات: 1012
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fluent Python: Clear, Concise, and Effective Programming به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Python روان: برنامه نویسی واضح، مختصر و موثر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
زمان را برای خم کردن پایتون برای مطابقت با الگوهایی که به زبانهای دیگر آموختهاید تلف نکنید. سادگی پایتون به شما امکان می دهد به سرعت سازنده شوید، اما اغلب به این معنی است که از همه چیزهایی که زبان ارائه می دهد استفاده نمی کنید. با نسخه به روز شده این راهنمای عملی، نحوه نوشتن کد موثر و مدرن پایتون 3 را با استفاده از بهترین ایده های آن یاد خواهید گرفت.
ویژگیهای اصطلاحی Python 3 را فراتر از تجربه گذشته خود کشف و به کار ببرید. نویسنده Luciano Ramalho شما را از طریق ویژگیها و کتابخانههای زبان اصلی پایتون راهنمایی میکند و به شما میآموزد که چگونه کد خود را کوتاهتر، سریعتر و خواناتر کنید.
این نسخه جدید با بهروزرسانیهای عمده در سراسر این کتاب دارای پنج بخش است که به عنوان پنج کتاب کوتاه در کتاب کار میکنند:
Don't waste time bending Python to fit patterns you've learned in other languages. Python's simplicity lets you become productive quickly, but often this means you aren't using everything the language has to offer. With the updated edition of this hands-on guide, you'll learn how to write effective, modern Python 3 code by leveraging its best ideas.
Discover and apply idiomatic Python 3 features beyond your past experience. Author Luciano Ramalho guides you through Python's core language features and libraries and teaches you how to make your code shorter, faster, and more readable.
Complete with major updates throughout, this new edition features five parts that work as five short books within the book:
Cover Copyright Table of Contents Preface Who This Book Is For Who This Book Is Not For Five Books in One How the Book Is Organized Hands-On Approach Soapbox: My Personal Perspective Companion Website: fluentpython.com Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments Acknowledgments for the First Edition Part I. Data Structures Chapter 1. The Python Data Model What’s New in This Chapter A Pythonic Card Deck How Special Methods Are Used Emulating Numeric Types String Representation Boolean Value of a Custom Type Collection API Overview of Special Methods Why len Is Not a Method Chapter Summary Further Reading Chapter 2. An Array of Sequences What’s New in This Chapter Overview of Built-In Sequences List Comprehensions and Generator Expressions List Comprehensions and Readability Listcomps Versus map and filter Cartesian Products Generator Expressions Tuples Are Not Just Immutable Lists Tuples as Records Tuples as Immutable Lists Comparing Tuple and List Methods Unpacking Sequences and Iterables Using * to Grab Excess Items Unpacking with * in Function Calls and Sequence Literals Nested Unpacking Pattern Matching with Sequences Pattern Matching Sequences in an Interpreter Slicing Why Slices and Ranges Exclude the Last Item Slice Objects Multidimensional Slicing and Ellipsis Assigning to Slices Using + and * with Sequences Building Lists of Lists Augmented Assignment with Sequences A += Assignment Puzzler list.sort Versus the sorted Built-In When a List Is Not the Answer Arrays Memory Views NumPy Deques and Other Queues Chapter Summary Further Reading Chapter 3. Dictionaries and Sets What’s New in This Chapter Modern dict Syntax dict Comprehensions Unpacking Mappings Merging Mappings with | Pattern Matching with Mappings Standard API of Mapping Types What Is Hashable Overview of Common Mapping Methods Inserting or Updating Mutable Values Automatic Handling of Missing Keys defaultdict: Another Take on Missing Keys The __missing__ Method Inconsistent Usage of __missing__ in the Standard Library Variations of dict collections.OrderedDict collections.ChainMap collections.Counter shelve.Shelf Subclassing UserDict Instead of dict Immutable Mappings Dictionary Views Practical Consequences of How dict Works Set Theory Set Literals Set Comprehensions Practical Consequences of How Sets Work Set Operations Set Operations on dict Views Chapter Summary Further Reading Chapter 4. Unicode Text Versus Bytes What’s New in This Chapter Character Issues Byte Essentials Basic Encoders/Decoders Understanding Encode/Decode Problems Coping with UnicodeEncodeError Coping with UnicodeDecodeError SyntaxError When Loading Modules with Unexpected Encoding How to Discover the Encoding of a Byte Sequence BOM: A Useful Gremlin Handling Text Files Beware of Encoding Defaults Normalizing Unicode for Reliable Comparisons Case Folding Utility Functions for Normalized Text Matching Extreme “Normalization”: Taking Out Diacritics Sorting Unicode Text Sorting with the Unicode Collation Algorithm The Unicode Database Finding Characters by Name Numeric Meaning of Characters Dual-Mode str and bytes APIs str Versus bytes in Regular Expressions str Versus bytes in os Functions Chapter Summary Further Reading Chapter 5. Data Class Builders What’s New in This Chapter Overview of Data Class Builders Main Features Classic Named Tuples Typed Named Tuples Type Hints 101 No Runtime Effect Variable Annotation Syntax The Meaning of Variable Annotations More About @dataclass Field Options Post-init Processing Typed Class Attributes Initialization Variables That Are Not Fields @dataclass Example: Dublin Core Resource Record Data Class as a Code Smell Data Class as Scaffolding Data Class as Intermediate Representation Pattern Matching Class Instances Simple Class Patterns Keyword Class Patterns Positional Class Patterns Chapter Summary Further Reading Chapter 6. Object References, Mutability, and Recycling What’s New in This Chapter Variables Are Not Boxes Identity, Equality, and Aliases Choosing Between == and is The Relative Immutability of Tuples Copies Are Shallow by Default Deep and Shallow Copies of Arbitrary Objects Function Parameters as References Mutable Types as Parameter Defaults: Bad Idea Defensive Programming with Mutable Parameters del and Garbage Collection Tricks Python Plays with Immutables Chapter Summary Further Reading Part II. Functions as Objects Chapter 7. Functions as First-Class Objects What’s New in This Chapter Treating a Function Like an Object Higher-Order Functions Modern Replacements for map, filter, and reduce Anonymous Functions The Nine Flavors of Callable Objects User-Defined Callable Types From Positional to Keyword-Only Parameters Positional-Only Parameters Packages for Functional Programming The operator Module Freezing Arguments with functools.partial Chapter Summary Further Reading Chapter 8. Type Hints in Functions What’s New in This Chapter About Gradual Typing Gradual Typing in Practice Starting with Mypy Making Mypy More Strict A Default Parameter Value Using None as a Default Types Are Defined by Supported Operations Types Usable in Annotations The Any Type Simple Types and Classes Optional and Union Types Generic Collections Tuple Types Generic Mappings Abstract Base Classes Iterable Parameterized Generics and TypeVar Static Protocols Callable NoReturn Annotating Positional Only and Variadic Parameters Imperfect Typing and Strong Testing Chapter Summary Further Reading Chapter 9. Decorators and Closures What’s New in This Chapter Decorators 101 When Python Executes Decorators Registration Decorators Variable Scope Rules Closures The nonlocal Declaration Variable Lookup Logic Implementing a Simple Decorator How It Works Decorators in the Standard Library Memoization with functools.cache Using lru_cache Single Dispatch Generic Functions Parameterized Decorators A Parameterized Registration Decorator The Parameterized Clock Decorator A Class-Based Clock Decorator Chapter Summary Further Reading Chapter 10. Design Patterns with First-Class Functions What’s New in This Chapter Case Study: Refactoring Strategy Classic Strategy Function-Oriented Strategy Choosing the Best Strategy: Simple Approach Finding Strategies in a Module Decorator-Enhanced Strategy Pattern The Command Pattern Chapter Summary Further Reading Part III. Classes and Protocols Chapter 11. A Pythonic Object What’s New in This Chapter Object Representations Vector Class Redux An Alternative Constructor classmethod Versus staticmethod Formatted Displays A Hashable Vector2d Supporting Positional Pattern Matching Complete Listing of Vector2d, Version 3 Private and “Protected” Attributes in Python Saving Memory with __slots__ Simple Measure of __slot__ Savings Summarizing the Issues with __slots__ Overriding Class Attributes Chapter Summary Further Reading Chapter 12. Special Methods for Sequences What’s New in This Chapter Vector: A User-Defined Sequence Type Vector Take #1: Vector2d Compatible Protocols and Duck Typing Vector Take #2: A Sliceable Sequence How Slicing Works A Slice-Aware __getitem__ Vector Take #3: Dynamic Attribute Access Vector Take #4: Hashing and a Faster == Vector Take #5: Formatting Chapter Summary Further Reading Chapter 13. Interfaces, Protocols, and ABCs The Typing Map What’s New in This Chapter Two Kinds of Protocols Programming Ducks Python Digs Sequences Monkey Patching: Implementing a Protocol at Runtime Defensive Programming and “Fail Fast” Goose Typing Subclassing an ABC ABCs in the Standard Library Defining and Using an ABC ABC Syntax Details Subclassing an ABC A Virtual Subclass of an ABC Usage of register in Practice Structural Typing with ABCs Static Protocols The Typed double Function Runtime Checkable Static Protocols Limitations of Runtime Protocol Checks Supporting a Static Protocol Designing a Static Protocol Best Practices for Protocol Design Extending a Protocol The numbers ABCs and Numeric Protocols Chapter Summary Further Reading Chapter 14. Inheritance: For Better or for Worse What’s New in This Chapter The super() Function Subclassing Built-In Types Is Tricky Multiple Inheritance and Method Resolution Order Mixin Classes Case-Insensitive Mappings Multiple Inheritance in the Real World ABCs Are Mixins Too ThreadingMixIn and ForkingMixIn Django Generic Views Mixins Multiple Inheritance in Tkinter Coping with Inheritance Favor Object Composition over Class Inheritance Understand Why Inheritance Is Used in Each Case Make Interfaces Explicit with ABCs Use Explicit Mixins for Code Reuse Provide Aggregate Classes to Users Subclass Only Classes Designed for Subclassing Avoid Subclassing from Concrete Classes Tkinter: The Good, the Bad, and the Ugly Chapter Summary Further Reading Chapter 15. More About Type Hints What’s New in This Chapter Overloaded Signatures Max Overload Takeaways from Overloading max TypedDict Type Casting Reading Type Hints at Runtime Problems with Annotations at Runtime Dealing with the Problem Implementing a Generic Class Basic Jargon for Generic Types Variance An Invariant Dispenser A Covariant Dispenser A Contravariant Trash Can Variance Review Implementing a Generic Static Protocol Chapter Summary Further Reading Chapter 16. Operator Overloading What’s New in This Chapter Operator Overloading 101 Unary Operators Overloading + for Vector Addition Overloading * for Scalar Multiplication Using @ as an Infix Operator Wrapping-Up Arithmetic Operators Rich Comparison Operators Augmented Assignment Operators Chapter Summary Further Reading Part IV. Control Flow Chapter 17. Iterators, Generators, and Classic Coroutines What’s New in This Chapter A Sequence of Words Why Sequences Are Iterable: The iter Function Using iter with a Callable Iterables Versus Iterators Sentence Classes with __iter__ Sentence Take #2: A Classic Iterator Don’t Make the Iterable an Iterator for Itself Sentence Take #3: A Generator Function How a Generator Works Lazy Sentences Sentence Take #4: Lazy Generator Sentence Take #5: Lazy Generator Expression When to Use Generator Expressions An Arithmetic Progression Generator Arithmetic Progression with itertools Generator Functions in the Standard Library Iterable Reducing Functions Subgenerators with yield from Reinventing chain Traversing a Tree Generic Iterable Types Classic Coroutines Example: Coroutine to Compute a Running Average Returning a Value from a Coroutine Generic Type Hints for Classic Coroutines Chapter Summary Further Reading Chapter 18. with, match, and else Blocks What’s New in This Chapter Context Managers and with Blocks The contextlib Utilities Using @contextmanager Pattern Matching in lis.py: A Case Study Scheme Syntax Imports and Types The Parser The Environment The REPL The Evaluator Procedure: A Class Implementing a Closure Using OR-patterns Do This, Then That: else Blocks Beyond if Chapter Summary Further Reading Chapter 19. Concurrency Models in Python What’s New in This Chapter The Big Picture A Bit of Jargon Processes, Threads, and Python’s Infamous GIL A Concurrent Hello World Spinner with Threads Spinner with Processes Spinner with Coroutines Supervisors Side-by-Side The Real Impact of the GIL Quick Quiz A Homegrown Process Pool Process-Based Solution Understanding the Elapsed Times Code for the Multicore Prime Checker Experimenting with More or Fewer Processes Thread-Based Nonsolution Python in the Multicore World System Administration Data Science Server-Side Web/Mobile Development WSGI Application Servers Distributed Task Queues Chapter Summary Further Reading Concurrency with Threads and Processes The GIL Concurrency Beyond the Standard Library Concurrency and Scalability Beyond Python Chapter 20. Concurrent Executors What’s New in This Chapter Concurrent Web Downloads A Sequential Download Script Downloading with concurrent.futures Where Are the Futures? Launching Processes with concurrent.futures Multicore Prime Checker Redux Experimenting with Executor.map Downloads with Progress Display and Error Handling Error Handling in the flags2 Examples Using futures.as_completed Chapter Summary Further Reading Chapter 21. Asynchronous Programming What’s New in This Chapter A Few Definitions An asyncio Example: Probing Domains Guido’s Trick to Read Asynchronous Code New Concept: Awaitable Downloading with asyncio and HTTPX The Secret of Native Coroutines: Humble Generators The All-or-Nothing Problem Asynchronous Context Managers Enhancing the asyncio Downloader Using asyncio.as_completed and a Thread Throttling Requests with a Semaphore Making Multiple Requests for Each Download Delegating Tasks to Executors Writing asyncio Servers A FastAPI Web Service An asyncio TCP Server Asynchronous Iteration and Asynchronous Iterables Asynchronous Generator Functions Async Comprehensions and Async Generator Expressions async Beyond asyncio: Curio Type Hinting Asynchronous Objects How Async Works and How It Doesn’t Running Circles Around Blocking Calls The Myth of I/O-Bound Systems Avoiding CPU-Bound Traps Chapter Summary Further Reading Part V. Metaprogramming Chapter 22. Dynamic Attributes and Properties What’s New in This Chapter Data Wrangling with Dynamic Attributes Exploring JSON-Like Data with Dynamic Attributes The Invalid Attribute Name Problem Flexible Object Creation with __new__ Computed Properties Step 1: Data-Driven Attribute Creation Step 2: Property to Retrieve a Linked Record Step 3: Property Overriding an Existing Attribute Step 4: Bespoke Property Cache Step 5: Caching Properties with functools Using a Property for Attribute Validation LineItem Take #1: Class for an Item in an Order LineItem Take #2: A Validating Property A Proper Look at Properties Properties Override Instance Attributes Property Documentation Coding a Property Factory Handling Attribute Deletion Essential Attributes and Functions for Attribute Handling Special Attributes that Affect Attribute Handling Built-In Functions for Attribute Handling Special Methods for Attribute Handling Chapter Summary Further Reading Chapter 23. Attribute Descriptors What’s New in This Chapter Descriptor Example: Attribute Validation LineItem Take #3: A Simple Descriptor LineItem Take #4: Automatic Naming of Storage Attributes LineItem Take #5: A New Descriptor Type Overriding Versus Nonoverriding Descriptors Overriding Descriptors Overriding Descriptor Without __get__ Nonoverriding Descriptor Overwriting a Descriptor in the Class Methods Are Descriptors Descriptor Usage Tips Descriptor Docstring and Overriding Deletion Chapter Summary Further Reading Chapter 24. Class Metaprogramming What’s New in This Chapter Classes as Objects type: The Built-In Class Factory A Class Factory Function Introducing __init_subclass__ Why __init_subclass__ Cannot Configure __slots__ Enhancing Classes with a Class Decorator What Happens When: Import Time Versus Runtime Evaluation Time Experiments Metaclasses 101 How a Metaclass Customizes a Class A Nice Metaclass Example Metaclass Evaluation Time Experiment A Metaclass Solution for Checked Metaclasses in the Real World Modern Features Simplify or Replace Metaclasses Metaclasses Are Stable Language Features A Class Can Only Have One Metaclass Metaclasses Should Be Implementation Details A Metaclass Hack with __prepare__ Wrapping Up Chapter Summary Further Reading Afterword Further Reading Index About the Author Colophon