دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Saeid Eslamian. Faezeh Eslamian
سری:
ISBN (شابک) : 9781138615144, 9780429463327
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: 564
[565]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 241 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Flood Handbook: Impacts and Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهنمای سیل: اثرات و مدیریت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیشگیری از سیل دشوار است، اما می توان به منظور کاهش اثرات زیست محیطی، اجتماعی، فرهنگی و اقتصادی آن را مدیریت کرد. سیل یک تهدید جدی برای جان و مال است، و بنابراین بسیار مهم است که خطرات سیل در هر فرآیند برنامه ریزی در نظر گرفته شود. این کتاب راهنما جنبه های مختلف سیل را در شرایط آب و هوایی در حال تغییر و در نقاط مختلف جغرافیایی ارائه می دهد. این کتاب که توسط متخصصانی از سراسر جهان نوشته شده است، سیل را در اقلیم ها و مناظر مختلف با در نظر گرفتن عوامل محیطی، اکولوژیکی، هیدرولوژیکی و ژئومورفیک بررسی می کند و مناطق شهری، کشاورزی، مرتعی، جنگلی، ساحلی و بیابانی را در نظر می گیرد. امکانات اصول و کاربردهای اصلی علم سیل شامل مهندسی و فناوری، علوم طبیعی و همچنین مفاهیم جامعه شناختی را ارائه می کند. سیل را در اقلیم های مختلف و مناظر متنوع با در نظر گرفتن عوامل محیطی، اکولوژیکی، هیدرولوژیکی و ژئومورفیک بررسی می کند. در نظر گرفتن سیل در مناطق شهری، کشاورزی، مرتعی، جنگلی، ساحلی و بیابانی ساختارهای کنترل سیل و همچنین روش های آمادگی و واکنش را پوشش می دهد. نوشته شده در زمینه جهانی، توسط مشارکت کنندگان از سراسر جهان.
Floods are difficult to prevent but can be managed in order to reduce their environmental, social, cultural, and economic impacts. Flooding poses a serious threat to life and property, and therefore it’s very important that flood risks be taken into account during any planning process. This handbook presents different aspects of flooding in the context of a changing climate and across various geographical locations. Written by experts from around the world, it examines flooding in various climates and landscapes, taking into account environmental, ecological, hydrological, and geomorphic factors, and considers urban, agriculture, rangeland, forest, coastal, and desert areas. Features Presents the main principles and applications of the science of floods, including engineering and technology, natural science, as well as sociological implications. Examines flooding in various climates and diverse landscapes, taking into account environmental, ecological, hydrological, and geomorphic factors. Considers floods in urban, agriculture, rangeland, forest, coastal, and desert areas Covers flood control structures as well as preparedness and response methods. Written in a global context, by contributors from around the world.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Editors Contributors Part I Floods and Sustainability Chapter 1 Hydrological Resilience of Large Lakes Management 1.1 Introduction 1.2 Hydrological Resilience Framework 1.2.1 Normal Performance 1.2.2 Reaching to the Critical Performance 1.2.3 Quantifying the Resilience, a Probabilistic Approach 1.2.4 Summary: Comprehensive Framework, a Suggestion 1.3 Resilience and Climate Change 1.4 Case Study 1.4.1 Background 1.4.2 Model Construction 1.4.3 Rainfall Depths and Losses 1.4.4 Results 1.4.4.1 Flood Hydrology 1.4.4.2 Lake’s Resiliency against Different Flood Events 1.5 Summary and Conclusions Glossary and Acronyms References Chapter 2 Sustainability in Flood Management 2.1 Introduction 2.2 Flood Control and Its Management in the World 2.2.1 Causes and Consequences of Floods 2.2.2 Flood Control 2.2.3 Flood Protection in Europe, North America, and Asia 2.2.4 Measures Adopted for Post-Flood Cleaning Safety 2.2.5 Benefits from Floods 2.2.6 Confronting Floods in the Future 2.3 Netherlands Experiences in Flood Prevention and Control 2.4 The Netherlands and Global Warming 2.5 Sustainability in Flood Management 2.6 Summary and Conclusions References Chapter 3 Best Management Practices as an Alternative Approach for Urban Flood Control 3.1 Introduction 3.2 BMP Need and Function: Addressing Hydrological Alterations from Land Development 3.2.1 Forest Hydrologic Setting 3.2.2 Urban Hydrologic Setting 3.2.3 Role of Stormwater BMPs 3.3 Classification of BMPs 3.4 BMP Treatment Objectives, Goals, Capabilities, and Economics 3.4.1 BMP Treatment Objectives and Performance Goals 3.4.2 BMP Treatment Capabilities and Economics 3.4.2.1 Runoff Reduction 3.4.2.2 Peak Rate Control 3.4.2.3 Pollutant Removal 3.4.3 Treatment Trains 3.4.4 Stormwater BMP Economics 3.5 Structural BMPs 3.5.1 Runoff Capture at Source 3.5.1.1 Permeable Pavements 3.5.1.2 Green Roofs or Ecoroofs 3.5.1.3 Rain Barrels and Cisterns 3.5.1.4 Dry Wells 3.5.1.5 Planter Boxes 3.5.2 Detention and Retention of Peak Flow 3.5.2.1 Dry Detention Basins or Ponds 3.5.2.2 Extended Detention Basins or Ponds 3.5.2.3 Retention Basins or Wet Ponds 3.5.2.4 Grassed Swales 3.5.3 Runoff Infiltration and Groundwater Recharge 3.5.3.1 Infiltration Basins 3.5.3.2 Infiltration Trenches/Ditches 3.5.3.3 Bioretention Areas or Rain Gardens 3.6 Non-Structural BMPs 3.7 Urban Water Management Approaches 3.7.1 BMPs vs. SCMs 3.7.2 Low Impact Development (LID) 3.7.3 Sustainable Drainage Systems (SuDS) 3.7.4 Alternative Techniques (ATs) or Compensatory Techniques (CTs) 3.7.5 Water Sensitive Urban Design (WSUD) 3.7.6 Green Infrastructure (GI) 3.7.7 Discussion 3.8 Case Examples 3.8.1 Huntington, West Virginia, USA 3.8.2 Copenhagen, Denmark 3.9 Summary and Conclusions References Part II Flood Impact Analysis Chapter 4 Flood Management: Status, Causes, and Land-Use Impact in Brahmaputra Basin, Northeastern Region of India 4.1 Introduction 4.1.1 Background 4.2 Site of Study and Methodology 4.3 Results and Discussion 4.3.1 Area and Extent of Floods 4.3.2 Causes of Floods 4.3.2.1 Natural Factors 4.3.2.2 Anthropogenic Factors 4.3.2.3 Urbanization 4.3.3 The Hydrological Risks 4.3.4 Impact of Land Use Systems 4.3.5 Sediment Load in Flood Water 4.3.6 Flood Management 4.4 Summary and Conclusions References Chapter 5 Impact of Urbanization on Flooding 5.1 Introduction 5.2 Urban Hydrology 5.2.1 Hydrologic Effects of Urbanization 5.2.2 Approaches to Urban Hydrology 5.2.2.1 Empirical Methods 5.2.2.2 Physical-Process Methods 5.2.3 Flooding Reduction with BMPs 5.3 Floodplain Hydraulics 5.3.1 Hydraulic Effects of Urbanization 5.3.2 Floodplain Management 5.3.3 Floodplain Hydraulic Analysis 5.4 Summary and Conclusions References Chapter 6 Impact of Infiltration on Flood Volume and Peak 6.1 Introduction 6.2 Infiltration Rate 6.3 Estimating the Infiltration Rate 6.3.1 SCS Curve Number Infiltration Method 6.3.2 Green and Ampt Infiltration Method 6.3.3 The Hydrological Model FEST 6.3.4 The Best Model for Estimating Infiltration Rate 6.3.5 Sensitivity Index 6.4 Relationship between Peak Flow and Hydrograph Volume 6.5 Promote Infiltration to Protect Groundwater Recharge and Reduce Flood Volume and Peak 6.5.1 Define “Predevelopment Condition” as “Woodland, Pasture, or Meadow Condition” to Increase Infiltration and Reduce Flood Volume and Peak 6.5.2 Hydrologic Effects of Urban Development on Flood Discharge and Frequency 6.6 Summary and Conclusions References Chapter 7 Form Resistance Prediction in Gravel-Bed Rivers 7.1 Introduction 7.2 Bedforms in Gravel-Bed Rivers 7.2.1 Cluster 7.2.2 Riffle-Pool Sequence 7.2.3 Step-Pool Sequence 7.2.4 Rapids and Cascades 7.3 Predicting the Form Friction Factor 7.3.1 Method 7.4 Field Study 7.5 Results and Discussion 7.5.1 Friction Factor 7.5.2 Velocity Distribution 7.6 Summary and Conclusions References Chapter 8 Catchment Morphometric Characteristics’ Impact on Floods Management: The Role of Geospatial Technology 8.1 Introduction 8.2 Flooding 8.2.1 Types of Flood 8.2.1.1 Flash Flood 8.2.1.2 Fluvial (Riverine) Floods 8.2.1.3 Single Event Floods 8.2.1.4 Multiple Event Floods 8.2.1.5 Seasonal Floods 8.2.1.6 Coastal Floods 8.2.1.7 Estuarine Floods 8.2.1.8 Urban Floods 8.2.1.9 Snowmelt Floods 8.2.1.10 Ice and Debris-Jam Floods 8.2.2 Causes of Flooding 8.2.3 Consequences of Flood 8.2.3.1 Social Impacts 8.2.3.2 Health Impact 8.2.3.3 Environmental Consequences 8.2.4 Economic Loss in Different Countries 8.2.5 Factors Affecting Flood Frequency 8.2.5.1 Physical Factors 8.2.5.2 Anthropogenic Factors (Human Factors) 8.2.6 Basin Hydrological Process 8.2.7 Role of Morphometry 8.2.8 Role of Geospatial Technology in Flood Management 8.2.9 Digital Elevation Models in Flood Management 8.2.10 Role of Microwave Remote Sensing 8.3 Case Studies 8.3.1 Ganga River Basin 8.3.2 In Eastern Himalayan Region 8.3.3 Krishna River Basin 8.4 Summary and Conclusions Bibliography Part III Flood Risk Management Chapter 9 Floods: From Risk to Opportunity 9.1 Introduction 9.2 The Elements of Flood Risk 9.3 The Language of Flood Risk Management 9.4 The Condensed Form of Flood Risk Management 9.5 Opportunities 9.6 Case Study: Napa River Floods, California 9.6.1 The “Living River” Design 9.6.2 A Project Ahead of Its Time 9.7 Summary and Conclusions References Chapter 10 Flood Risk Management in Romania 10.1 Introduction 10.2 Issue of Risks and Floods 10.3 Legislative Regulations 10.4 Flood Protection Measures 10.5 Projects for Implementing Concepts and Technologies in Flood Management Activity 10.5.1 WATMAN 10.5.2 DESWAT Project 10.5.3 RO-RISK 10.5.4 VULMIN 10.6 Development of the Flood Hazard Maps 10.7 Discussions 10.8 Summary and Conclusions References Chapter 11 Importance of Risk Mapping in the Processes of Spatial Planning in Spain 11.1 Introduction 11.2 Changes in the Management of Natural Risks: The Growing Importance of Natural Risk Mapping – Some International Experiences 11.3 Flood Risk Maps and Spatial Planning Processes in Spain 11.4 Some Examples of Deficient Incorporation of Flood Risk Maps in Planning Processes in Spain 11.5 Summary and Conclusions References Chapter 12 Reducing Flood Risk in Spain: The Role of Spatial Planning 12.1 Introduction 12.2 Materials and Methods 12.2.1 From Structural Measures to Spatial Planning in Flood Risk Management in Spain 12.2.2 Mixed Results of Spatial Planning as a Flood Reduction Measure 12.3 Summary and Conclusions References Chapter 13 Integration of Flood Losses in Risk Analysis 13.1 Introduction 13.2 Current Knowledge 13.2.1 Flood Risk Analysis Framework 13.2.2 Intangible Losses Due to Coastal Floods: Evaluation Methods 13.2.2.1 Loss of Life 13.2.2.2 Health Impacts 13.2.2.3 Cultural Losses 13.2.2.4 Environmental Losses 13.2.3 Integration of Tangible and Intangible Losses in Flood Risk Analysis 13.2.3.1 Problem Definition, Identification of Evaluation Criteria, and Comparative Analysis of Alternatives 13.2.3.2 Criteria Evaluation/Decision Matrices 13.2.3.3 Criterion Weights 13.2.3.4 Decision Rules 13.2.3.5 Ranking of Alternatives 13.3 Development of Methods for the Evaluation of Intangible Losses 13.3.1 Loss of Life and Physical Injuries 13.3.2 Mental Health Impacts 13.3.2.1 Flood Loss Factor (FLF) 13.3.2.2 Direct Exposure Factor (DEF) 13.3.2.3 Mental Health Impact Assessment 13.3.3 Cultural Losses 13.3.3.1 Proposed Method for the Evaluation of Cultural Losses 13.3.3.2 Assessment of Physical Damages to Cultural Assets 13.3.3.3 Assessment of the Cultural Values of Cultural Assets 13.3.3.4 Assessment of Cultural Losses 13.3.4 Environmental Losses 13.3.4.1 Proposed Method for the Evaluation of Environmental Losses 13.3.4.2 Identification of Ecosystem Services of Beach/Dune Ecosystems 13.3.4.3 Estimation of Damages to Beach/Dune Ecosystems 13.3.4.4 Ecosystem Services Damage Assessment (ESDA) Table for Beach/Dune Ecosystems 13.3.4.5 Estimation of Level of Environmental Loss 13.4 Method for the Aggregation of Tangible and Intangible Losses 13.4.1 Problem Definition and Goal Setting 13.4.2 Determination of Evaluation Criteria 13.4.3 Definition of Alternatives 13.4.4 Performance Evaluation of Each Alternative Using Evaluation Criteria 13.4.5 Determination of Criterion Weights 13.4.6 Decision Rules 13.4.6.1 Loss of life: Value Function VLL(x) 13.4.6.2 Health Impacts: Value Function for Physical Injuries and Mental Health VPI(x) and VMH(x) 13.4.6.3 Cultural Losses: Value Function VCL(x) 13.4.6.4 Environmental Losses: Value Function VEnL(x) 13.4.6.5 Economic Losses: Value Function VEL(x) 13.4.7 Aggregation of Criteria and Ranking/Scoring of Alternatives 13.5 Case Study of Flood Risk Analysis in Hamburg-Wilhelmsburg 13.6 Summary and Conclusions References Chapter 14 River Rehabilitation for Flood Protection 14.1 Introduction 14.2 Changes in Politics – Mitigation of Conflicts 14.2.1 The Example of the Rhine Basin 14.3 Morphological Transformations of Rivers 14.3.1 Primary Transformations 14.3.1.1 Transverse Structure 14.3.1.2 Longitudinal Structure 14.3.2 Secondary Transformations 14.3.2.1 Change in the Hydrological Regime 14.3.2.2 Categories of Hydro-Technical Structures’ Impact on the Aquatic Environment 14.4 Directory of Best Practices in the Rehabilitation of Rivers 14.5 Examples of River Rehabilitation 14.5.1 Renovation of the Buffer Zone of the Narew National Park (NPN), Poland 14.5.2 Reconstruction of Meanders on Straight Sections of the Cole River, Coleshill, Counties of Oxfordshire/Wiltshire, Great Britain 14.5.3 The REURIS Project: Restoration of the Ślepotka River 14.5.4 Renaturation of the Isar River in Bavaria, Germany 14.5.5 Restoration of the Hase River, the Catchment of River Ems, Lower Saxony, Germany 14.5.6 Restoration of the Würschnitz and Chemnitz Watercourses 14.5.6.1 Evaluation of the Watercourse Structure 14.5.6.2 Determining the Possibility of Restoring the Watercourse 14.6 SUMMARY AND CONCLUSIONS References Chapter 15 Torrential and Flash Flood Warning: General Overview and Uses of Localized Hydropower 15.1 Introduction 15.1.1 Background 15.2 Hydrological Model Techniques for Flood Forecasting 15.3 Examples of Flood Forecasting Models 15.3.1 EPIC Model 15.3.2 GloFAS Model 15.3.3 Flood Forecasting in Europe 15.3.4 Flood Forecasting in France 15.3.5 Flood Forecasting in the United States 15.3.6 Flood Forecasting in Taiwan 15.3.7 Flood Forecasting in Africa 15.4 Early Warning Systems at the Local Level 15.5 Hydropower and Its Potential in Localized Early Warning 15.6 Discussion 15.7 Limitations and Future Work 15.8 Summary and Conclusions References Part IV Flood Hazards and Damages Chapter 16 Flood and Building Damages 16.1 Introduction 16.1.1 Provisions 16.1.2 Interviews and Workshops 16.2 Specifying Drying Time 16.3 Monitoring the Moisture Content of the Material 16.4 Drying of Flooded Buildings 16.4.1 Background Information 16.4.2 Methods and Equipment Used to Dry Buildings 16.4.3 Sealing Building Parts to Help Dry 16.5 Flood Sources and Concepts 16.5.1 Flood Sources 16.5.2 Infrastructure Failure 16.5.3 Flood Inlet Routes 16.5.4 Exterior Wall/Block Wall/Cracks in the Outer Walls 16.6 Consequences of Flood Depth 16.6.1 Under the Ground Floor 16.6.2 Above the Ground Floor 16.7 Consequences of Flood Duration 16.8 Standards for Repair 16.8.1 Level A Standard of Repair 16.8.2 Level B Standard of Repair 16.8.3 Level C Standard of Repair 16.9 Safety, Disinfection, and Drying 16.10 Making Safety 16.11 The Safe Manufacturing Process Inclusion 16.12 Disinfection 16.12.1 Disinfection Process 16.13 Drying 16.13.1 Drying Process 16.13.2 Drying of Walls 16.13.3 Floor Drying 16.13.4 Drying Facilities (National Facilities Services [NFS]) 16.14 Secondary Injury Prevention 16.14.1 Density and Humidity 16.14.2 Molds 16.15 Post-Flood Assessment and Mitigation of Future Floods 16.16 Specifications 16.16.1 Electrical Services 16.16.2 Gas 16.16.3 Oil 16.16.4 Water 16.16.5 Drainage, Pipes, and Sewage 16.17 SUMMARY AND CONCLUSIONS References Chapter 17 Flood Mapping, Monitoring, and Damage Assessment 17.1 Introduction 17.1.1 Types of Flood 17.1.1.1 Flash Floods 17.1.1.2 Riverine/Fluvial Floods 17.1.1.3 Coastal Flood 17.1.1.4 Urban Flood 17.1.1.5 Ice Jam 17.1.1.6 Glacial Lake Outbursts Flood (GLOF) 17.1.2 Causes of Flood 17.2 Geospatial Technology 17.3 Role of Geospatial Technology in Flood Mapping 17.3.1 Optical Remote Sensing 17.3.1.1 Advantages and Disadvantage of Optical Remote Sensing Data 17.3.2 Microwave Remote Sensing 17.3.2.1 Advantages and Disadvantages of Microwave Remote Sensing Data 17.4 Role of Geospatial Technology in Flood Monitoring 17.4.1 Flood Extent 17.4.2 Flood Duration 17.4.3 Flood Depth 17.5 Role of Geospatial Technology in Flood Damage Assessment 17.5.1 Inundation in Administrative Boundaries/Spatial Damage 17.5.2 Infrastructural Damage 17.5.3 LULC Damage Assessment 17.6 Summary and Conclusions 17.7 Acknowledgments Note References Chapter 18 Fundamental Flood Hazard Issues in the Alluvial Fan Environment 18.1 Introduction 18.2 Definitions 18.2.1 Alluvial Fan Landform 18.2.2 Active Alluvial Fan 18.2.3 Inactive Alluvial Fans 18.2.4 Active Alluvial Fan Flooding 18.2.5 Apex 18.2.6 Flow Path Uncertainty 18.2.7 Avulsion 18.2.8 Fan-Like Landforms and Channel Patterns 18.2.8.1 Alluvial Plains 18.2.8.2 Pediments 18.2.8.3 Distributary Flow Areas 18.2.8.4 Sheet Flooding 18.2.8.5 Time Scales 18.3 Flood Processes on Alluvial Fans 18.3.1 Riverine Flooding 18.3.2 Distributary Flow 18.3.3 Sheet Flooding 18.3.4 Variable Flood Type 18.3.5 Flow Attenuation 18.3.6 On-Fan Flood Sources 18.3.7 Debris Flow 18.3.8 Sediment Deposition 18.3.9 Avulsions 18.3.10 Channel Erosion 18.4 Quantifying Alluvial Fan Flood Hazards – Hazard Assessment 18.4.1 Mapping Alluvial Fan Floodplain Limits 18.4.2 Qualitative Assessment Techniques 18.4.3 Hydrologic Modeling Considerations 18.4.4 Hydraulic Modeling Considerations 18.4.5 Advantages of Two-Dimensional Modeling 18.4.6 Modeling Flow Attenuation 18.4.7 FEMA FAN Model 18.4.8 Evaluating Flow Path Uncertainty 18.5 Floodplain Management on Alluvial Fans 18.5.1 Flood Hazard Type 18.5.2 Downstream Impacts 18.5.3 Whole Fan Solutions 18.5.4 Alternative Flood Hazard Zones 18.5.5 Maintenance 18.5.6 Design Frequency 18.6 Gaps in Understanding 18.6.1 Mud and Debris Flows 18.6.2 Urbanized Alluvial Fans 18.6.3 Non-Highly Active Fans 18.6.4 Avulsion Frequency 18.6.5 Hydrologic Modeling 18.6.6 High Hazard/Low Hazard Areas 18.7 Summary and Conclusions Note References Chapter 19 Physical Vulnerability, Flood Damage, and Adjustments: Examining the Factors Affecting Damage to Residential Buildings in Eastern Dhaka 19.1 Introduction 19.2 Theoretical Development and Conceptual Framework 19.2.1 Flood Vulnerability and Flood Damage 19.2.2 Flood Damage Reduction Measures 19.2.3 Buildings’ Physical Vulnerability and Adjustments to Flood Damage 19.3 Context of Dhaka 19.3.1 Overview of Dhaka 19.3.2 Flood Vulnerability of Eastern Dhaka 19.4 Research Setting and Methodology 19.4.1 Study Area 19.4.2 Data Collection and Analysis 19.5 Results 19.5.1 Causes of Flooding 19.5.2 Flood Damage to Residential Buildings 19.5.3 Physical Attributes and Flood Damage to Residential Buildings 19.5.3.1 Age of the Residential Buildings 19.5.3.2 Surrounding Land Cover Condition 19.5.3.3 The Height of Plinth Level 19.5.3.4 Building Typology 19.5.3.5 Buildings’ Adjustments 19.6 Discussions 19.7 Summary and Conclusions References Part V Flood Erosion and Sediment Chapter 20 River Flood Erosion and Land Development and Management 20.1 Introduction 20.2 River Channels and Climate Changes 20.3 Positive and Negative Effects of Weathering and Erosion 20.4 Flood Erosion, Land Vulnerability, and Risk 20.4.1 Intrinsic Vulnerability 20.4.2 Integrated Vulnerability 20.4.3 Risk 20.5 Erosion Control and Flood Risk Management (FRM) 20.5.1 Remediation and Land Reclamation 20.5.2 Erosion Control Measures 20.6 Zoning Criteria 20.7 Discussions 20.8 Conclusions References Chapter 21 Debris and Solid Wastes in Flood Plain Management 21.1 Introduction 21.2 Flood and Floodplain 21.3 Debris and Solid Waste 21.3.1 Debris Definition and Types 21.3.2 Solid Waste Definition and Types 21.4 Importance of Debris and Solid Waste Management 21.5 Debris and Solid Waste Management 21.5.1 Objectives of Debris and Solid Waste Management 21.5.2 Ordering and Time-Tabling of the Management Plan 21.5.3 Environmental Impacts 21.5.4 Economic Issues 21.5.5 Financial Features: Funding Methods 21.5.6 Social Issues 21.5.7 Organizational and Coordination Structures 21.5.8 Legislative Issues 21.6 Management Strategy 21.6.1 Debris Management 21.6.2 Solid Waste Management 21.7 The Hierarchy of Waste Management 21.8 Management Activities 21.8.1 Generation of Waste 21.8.2 Segregation and Recycling of Waste 21.8.3 Collection of Waste 21.8.4 Transfer and Transportation of Waste 21.8.5 Treatment or Processing of Waste 21.8.6 Disposal of Waste 21.9 Summary and Conclusions References Chapter 22 A Sedimentary Investigation into the Origin and Composition of a Dam Reservoir 22.1 Introduction 22.2 The Phenomenon of Sedimentation 22.3 Sediment Physical Analysis (Particle Size Analysis) 22.3.1 Natural Origin 22.3.2 Anthropogenic Origin 22.3.3 Sediment Composition 22.4 Origin of Sediment in Dams 22.4.1 Physical Factors 22.4.1.1 A Climate of Heavy Precipitation 22.4.1.2 An Important Vegetation Cover 22.4.1.3 Easily Movable Soils 22.4.1.4 Marked Topography Accelerating the Displacement of the Mobilized Materials 22.4.2 Anthropogenic Factors 22.4.2.1 A Strong Demographic Pressure 22.4.2.2 The Massive Clearing of Wooded Areas 22.4.2.3 Fires and Overgrazing 22.5 Cultivation Techniques 22.6 Means of Combating Siltation 22.7 Evacuation of Sediments as They Arrive 22.8 Dredging 22.9 Case Studies 22.9.1 Example 1: Origin of Solid Transport and Sedimentation in the Watershed of the Wadi Mina 22.9.1.1 Study Area 22.9.1.2 Data Used and Methods of Quantification 22.10 Discussion 22.10.1 Where Do the Sediments of the Dam Originate? 22.11 Summary and Conclusions References Chapter 23 Sedimentation and Geomorphological Changes During Floods 23.1 Introduction 23.2 Extreme Rainfall and Flood in the Darjeeling Himalayas on October 2–5, 1968 23.3 Role of Clustering of the Floods of Various Duration and Frequency – Their Sedimentological and Erosional Effects 23.4 SUMMARY AND CONCLUSIONS References Part VI Flooding and Dam Construction Chapter 24 Dam Failure Assessment for Sustainable Flood Retention Basins 24.1 Introduction 24.1.1 Background 24.1.2 Aim and Objectives 24.2 Methodology 24.2.1 Data Collection 24.2.2 Quick Screening Tool for Determining SFRB Dam Failure 24.2.3 Ordinary Kriging 24.3 Example Results and Discussion 24.3.1 Dam Failure Assessment for Different Types of SFRB 24.3.2 Spatial Distribution of the Hazard and Risk of Dam Failure 24.3.3 Risk Categories 24.4 Summary and Conclusions 24.5 Acknowledgments References Chapter 25 Simulating Flood Due to Dam Break 25.1 Introduction 25.2 Numerical Models 25.2.1 SPH Equations 25.2.2 Lagrange Multipliers for SPH Boundaries 25.2.3 RANS and LES Equations 25.2.4 VOF Equations 25.3 Description of Models Used in Experimental Studies 25.4 Results 25.4.1 Free Surface Profiles 25.4.2 Velocity Calculations 25.4.3 Pressure Calculations 25.5 Discussions 25.6 Summary and Conclusions References Chapter 26 Modeling the Propagation of the Submersion Wave in Case of a Dam Break: Case of the Gargar Dam, Algeria 26.1 Introduction 26.2 Description of Mathematical Model 26.3 Presentation of the Program 26.3.1 Numerical Application 26.4 SORB Program 26.5 Computer Code CASTOR 26.6 Summary and Conclusions References Chapter 27 River Restoration for Flood Impact Mitigation 27.1 Introduction 27.2 River Restoration: Basic Concepts 27.3 Brief Overview of River Restoration 27.4 River Restoration for Flood Impact Mitigation 27.5 SUMMARY AND CONCLUSIONS References Index