ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Flood Handbook: Impacts and Management

دانلود کتاب کتاب راهنمای سیل: اثرات و مدیریت

Flood Handbook: Impacts and Management

مشخصات کتاب

Flood Handbook: Impacts and Management

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781138615144, 9780429463327 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 564
[565] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 241 Mb 

قیمت کتاب (تومان) : 30,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Flood Handbook: Impacts and Management به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای سیل: اثرات و مدیریت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهنمای سیل: اثرات و مدیریت

پیشگیری از سیل دشوار است، اما می توان به منظور کاهش اثرات زیست محیطی، اجتماعی، فرهنگی و اقتصادی آن را مدیریت کرد. سیل یک تهدید جدی برای جان و مال است، و بنابراین بسیار مهم است که خطرات سیل در هر فرآیند برنامه ریزی در نظر گرفته شود. این کتاب راهنما جنبه های مختلف سیل را در شرایط آب و هوایی در حال تغییر و در نقاط مختلف جغرافیایی ارائه می دهد. این کتاب که توسط متخصصانی از سراسر جهان نوشته شده است، سیل را در اقلیم ها و مناظر مختلف با در نظر گرفتن عوامل محیطی، اکولوژیکی، هیدرولوژیکی و ژئومورفیک بررسی می کند و مناطق شهری، کشاورزی، مرتعی، جنگلی، ساحلی و بیابانی را در نظر می گیرد. امکانات اصول و کاربردهای اصلی علم سیل شامل مهندسی و فناوری، علوم طبیعی و همچنین مفاهیم جامعه شناختی را ارائه می کند. سیل را در اقلیم های مختلف و مناظر متنوع با در نظر گرفتن عوامل محیطی، اکولوژیکی، هیدرولوژیکی و ژئومورفیک بررسی می کند. در نظر گرفتن سیل در مناطق شهری، کشاورزی، مرتعی، جنگلی، ساحلی و بیابانی ساختارهای کنترل سیل و همچنین روش های آمادگی و واکنش را پوشش می دهد. نوشته شده در زمینه جهانی، توسط مشارکت کنندگان از سراسر جهان.


توضیحاتی درمورد کتاب به خارجی

Floods are difficult to prevent but can be managed in order to reduce their environmental, social, cultural, and economic impacts. Flooding poses a serious threat to life and property, and therefore it’s very important that flood risks be taken into account during any planning process. This handbook presents different aspects of flooding in the context of a changing climate and across various geographical locations. Written by experts from around the world, it examines flooding in various climates and landscapes, taking into account environmental, ecological, hydrological, and geomorphic factors, and considers urban, agriculture, rangeland, forest, coastal, and desert areas. Features Presents the main principles and applications of the science of floods, including engineering and technology, natural science, as well as sociological implications. Examines flooding in various climates and diverse landscapes, taking into account environmental, ecological, hydrological, and geomorphic factors. Considers floods in urban, agriculture, rangeland, forest, coastal, and desert areas Covers flood control structures as well as preparedness and response methods. Written in a global context, by contributors from around the world.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Editors
Contributors
Part I Floods and Sustainability
	Chapter 1 Hydrological Resilience of Large Lakes Management
		1.1 Introduction
		1.2 Hydrological Resilience Framework
			1.2.1 Normal Performance
			1.2.2 Reaching to the Critical Performance
			1.2.3 Quantifying the Resilience, a Probabilistic Approach
			1.2.4 Summary: Comprehensive Framework, a Suggestion
		1.3 Resilience and Climate Change
		1.4 Case Study
			1.4.1 Background
			1.4.2 Model Construction
			1.4.3 Rainfall Depths and Losses
			1.4.4 Results
				1.4.4.1 Flood Hydrology
				1.4.4.2 Lake’s Resiliency against Different Flood Events
		1.5 Summary and Conclusions
		Glossary and Acronyms
		References
	Chapter 2 Sustainability in Flood Management
		2.1 Introduction
		2.2 Flood Control and Its Management in the World
			2.2.1 Causes and Consequences of Floods
			2.2.2 Flood Control
			2.2.3 Flood Protection in Europe, North America, and Asia
			2.2.4 Measures Adopted for Post-Flood Cleaning Safety
			2.2.5 Benefits from Floods
			2.2.6 Confronting Floods in the Future
		2.3 Netherlands Experiences in Flood Prevention and Control
		2.4 The Netherlands and Global Warming
		2.5 Sustainability in Flood Management
		2.6 Summary and Conclusions
		References
	Chapter 3 Best Management Practices as an Alternative Approach for Urban Flood Control
		3.1 Introduction
		3.2 BMP Need and Function: Addressing Hydrological Alterations from Land Development
			3.2.1 Forest Hydrologic Setting
			3.2.2 Urban Hydrologic Setting
			3.2.3 Role of Stormwater BMPs
		3.3 Classification of BMPs
		3.4 BMP Treatment Objectives, Goals, Capabilities, and Economics
			3.4.1 BMP Treatment Objectives and Performance Goals
			3.4.2 BMP Treatment Capabilities and Economics
				3.4.2.1 Runoff Reduction
				3.4.2.2 Peak Rate Control
				3.4.2.3 Pollutant Removal
			3.4.3 Treatment Trains
			3.4.4 Stormwater BMP Economics
		3.5 Structural BMPs
			3.5.1 Runoff Capture at Source
				3.5.1.1 Permeable Pavements
				3.5.1.2 Green Roofs or Ecoroofs
				3.5.1.3 Rain Barrels and Cisterns
				3.5.1.4 Dry Wells
				3.5.1.5 Planter Boxes
			3.5.2 Detention and Retention of Peak Flow
				3.5.2.1 Dry Detention Basins or Ponds
				3.5.2.2 Extended Detention Basins or Ponds
				3.5.2.3 Retention Basins or Wet Ponds
				3.5.2.4 Grassed Swales
			3.5.3 Runoff Infiltration and Groundwater Recharge
				3.5.3.1 Infiltration Basins
				3.5.3.2 Infiltration Trenches/Ditches
				3.5.3.3 Bioretention Areas or Rain Gardens
		3.6 Non-Structural BMPs
		3.7 Urban Water Management Approaches
			3.7.1 BMPs vs. SCMs
			3.7.2 Low Impact Development (LID)
			3.7.3 Sustainable Drainage Systems (SuDS)
			3.7.4 Alternative Techniques (ATs) or Compensatory Techniques (CTs)
			3.7.5 Water Sensitive Urban Design (WSUD)
			3.7.6 Green Infrastructure (GI)
			3.7.7 Discussion
		3.8 Case Examples
			3.8.1 Huntington, West Virginia, USA
			3.8.2 Copenhagen, Denmark
		3.9 Summary and Conclusions
		References
Part II Flood Impact Analysis
	Chapter 4 Flood Management: Status, Causes, and Land-Use Impact in Brahmaputra Basin, Northeastern Region of India
		4.1 Introduction
			4.1.1 Background
		4.2 Site of Study and Methodology
		4.3 Results and Discussion
			4.3.1 Area and Extent of Floods
			4.3.2 Causes of Floods
				4.3.2.1 Natural Factors
				4.3.2.2 Anthropogenic Factors
				4.3.2.3 Urbanization
			4.3.3 The Hydrological Risks
			4.3.4 Impact of Land Use Systems
			4.3.5 Sediment Load in Flood Water
			4.3.6 Flood Management
		4.4 Summary and Conclusions
		References
	Chapter 5 Impact of Urbanization on Flooding
		5.1 Introduction
		5.2 Urban Hydrology
			5.2.1 Hydrologic Effects of Urbanization
			5.2.2 Approaches to Urban Hydrology
				5.2.2.1 Empirical Methods
				5.2.2.2 Physical-Process Methods
			5.2.3 Flooding Reduction with BMPs
		5.3 Floodplain Hydraulics
			5.3.1 Hydraulic Effects of Urbanization
			5.3.2 Floodplain Management
			5.3.3 Floodplain Hydraulic Analysis
		5.4 Summary and Conclusions
		References
	Chapter 6 Impact of Infiltration on Flood Volume and Peak
		6.1 Introduction
		6.2 Infiltration Rate
		6.3 Estimating the Infiltration Rate
			6.3.1 SCS Curve Number Infiltration Method
			6.3.2 Green and Ampt Infiltration Method
			6.3.3 The Hydrological Model FEST
			6.3.4 The Best Model for Estimating Infiltration Rate
			6.3.5 Sensitivity Index
		6.4 Relationship between Peak Flow and Hydrograph Volume
		6.5 Promote Infiltration to Protect Groundwater Recharge and Reduce Flood Volume and Peak
			6.5.1 Define “Predevelopment Condition” as “Woodland, Pasture, or Meadow Condition” to Increase Infiltration and Reduce Flood Volume and Peak
			6.5.2 Hydrologic Effects of Urban Development on Flood Discharge and Frequency
		6.6 Summary and Conclusions
		References
	Chapter 7 Form Resistance Prediction in Gravel-Bed Rivers
		7.1 Introduction
		7.2 Bedforms in Gravel-Bed Rivers
			7.2.1 Cluster
			7.2.2 Riffle-Pool Sequence
			7.2.3 Step-Pool Sequence
			7.2.4 Rapids and Cascades
		7.3 Predicting the Form Friction Factor
			7.3.1 Method
		7.4 Field Study
		7.5 Results and Discussion
			7.5.1 Friction Factor
			7.5.2 Velocity Distribution
		7.6 Summary and Conclusions
		References
	Chapter 8 Catchment Morphometric Characteristics’ Impact on Floods Management: The Role of Geospatial Technology
		8.1 Introduction
		8.2 Flooding
			8.2.1 Types of Flood
				8.2.1.1 Flash Flood
				8.2.1.2 Fluvial (Riverine) Floods
				8.2.1.3 Single Event Floods
				8.2.1.4 Multiple Event Floods
				8.2.1.5 Seasonal Floods
				8.2.1.6 Coastal Floods
				8.2.1.7 Estuarine Floods
				8.2.1.8 Urban Floods
				8.2.1.9 Snowmelt Floods
				8.2.1.10 Ice and Debris-Jam Floods
			8.2.2 Causes of Flooding
			8.2.3 Consequences of Flood
				8.2.3.1 Social Impacts
				8.2.3.2 Health Impact
				8.2.3.3 Environmental Consequences
			8.2.4 Economic Loss in Different Countries
			8.2.5 Factors Affecting Flood Frequency
				8.2.5.1 Physical Factors
				8.2.5.2 Anthropogenic Factors (Human Factors)
			8.2.6 Basin Hydrological Process
			8.2.7 Role of Morphometry
			8.2.8 Role of Geospatial Technology in Flood Management
			8.2.9 Digital Elevation Models in Flood Management
			8.2.10 Role of Microwave Remote Sensing
		8.3 Case Studies
			8.3.1 Ganga River Basin
			8.3.2 In Eastern Himalayan Region
			8.3.3 Krishna River Basin
		8.4 Summary and Conclusions
		Bibliography
Part III Flood Risk Management
	Chapter 9 Floods: From Risk to Opportunity
		9.1 Introduction
		9.2 The Elements of Flood Risk
		9.3 The Language of Flood Risk Management
		9.4 The Condensed Form of Flood Risk Management
		9.5 Opportunities
		9.6 Case Study: Napa River Floods, California
			9.6.1 The “Living River” Design
			9.6.2 A Project Ahead of Its Time
		9.7 Summary and Conclusions
		References
	Chapter 10 Flood Risk Management in Romania
		10.1 Introduction
		10.2 Issue of Risks and Floods
		10.3 Legislative Regulations
		10.4 Flood Protection Measures
		10.5 Projects for Implementing Concepts and Technologies in Flood Management Activity
			10.5.1 WATMAN
			10.5.2 DESWAT Project
			10.5.3 RO-RISK
			10.5.4 VULMIN
		10.6 Development of the Flood Hazard Maps
		10.7 Discussions
		10.8 Summary and Conclusions
		References
	Chapter 11 Importance of Risk Mapping in the Processes of Spatial Planning in Spain
		11.1 Introduction
		11.2 Changes in the Management of Natural Risks: The Growing Importance of Natural Risk Mapping – Some International Experiences
		11.3 Flood Risk Maps and Spatial Planning Processes in Spain
		11.4 Some Examples of Deficient Incorporation of Flood Risk Maps in Planning Processes in Spain
		11.5 Summary and Conclusions
		References
	Chapter 12 Reducing Flood Risk in Spain: The Role of Spatial Planning
		12.1 Introduction
		12.2 Materials and Methods
			12.2.1 From Structural Measures to Spatial Planning in Flood Risk Management in Spain
			12.2.2 Mixed Results of Spatial Planning as a Flood Reduction Measure
		12.3 Summary and Conclusions
		References
	Chapter 13 Integration of Flood Losses in Risk Analysis
		13.1 Introduction
		13.2 Current Knowledge
			13.2.1 Flood Risk Analysis Framework
			13.2.2 Intangible Losses Due to Coastal Floods: Evaluation Methods
				13.2.2.1 Loss of Life
				13.2.2.2 Health Impacts
				13.2.2.3 Cultural Losses
				13.2.2.4 Environmental Losses
			13.2.3 Integration of Tangible and Intangible Losses in Flood Risk Analysis
				13.2.3.1 Problem Definition, Identification of Evaluation Criteria, and Comparative Analysis of Alternatives
				13.2.3.2 Criteria Evaluation/Decision Matrices
				13.2.3.3 Criterion Weights
				13.2.3.4 Decision Rules
				13.2.3.5 Ranking of Alternatives
		13.3 Development of Methods for the Evaluation of Intangible Losses
			13.3.1 Loss of Life and Physical Injuries
			13.3.2 Mental Health Impacts
				13.3.2.1 Flood Loss Factor (FLF)
				13.3.2.2 Direct Exposure Factor (DEF)
				13.3.2.3 Mental Health Impact Assessment
			13.3.3 Cultural Losses
				13.3.3.1 Proposed Method for the Evaluation of Cultural Losses
				13.3.3.2 Assessment of Physical Damages to Cultural Assets
				13.3.3.3 Assessment of the Cultural Values of Cultural Assets
				13.3.3.4 Assessment of Cultural Losses
			13.3.4 Environmental Losses
				13.3.4.1 Proposed Method for the Evaluation of Environmental Losses
				13.3.4.2 Identification of Ecosystem Services of Beach/Dune Ecosystems
				13.3.4.3 Estimation of Damages to Beach/Dune Ecosystems
				13.3.4.4 Ecosystem Services Damage Assessment (ESDA) Table for Beach/Dune Ecosystems
				13.3.4.5 Estimation of Level of Environmental Loss
		13.4 Method for the Aggregation of Tangible and Intangible Losses
			13.4.1 Problem Definition and Goal Setting
			13.4.2 Determination of Evaluation Criteria
			13.4.3 Definition of Alternatives
			13.4.4 Performance Evaluation of Each Alternative Using Evaluation Criteria
			13.4.5 Determination of Criterion Weights
			13.4.6 Decision Rules
				13.4.6.1 Loss of life: Value Function VLL(x)
				13.4.6.2 Health Impacts: Value Function for Physical Injuries and Mental Health VPI(x) and VMH(x)
				13.4.6.3 Cultural Losses: Value Function VCL(x)
				13.4.6.4 Environmental Losses: Value Function VEnL(x)
				13.4.6.5 Economic Losses: Value Function VEL(x)
			13.4.7 Aggregation of Criteria and Ranking/Scoring of Alternatives
		13.5 Case Study of Flood Risk Analysis in Hamburg-Wilhelmsburg
		13.6 Summary and Conclusions
		References
	Chapter 14 River Rehabilitation for Flood Protection
		14.1 Introduction
		14.2 Changes in Politics – Mitigation of Conflicts
			14.2.1 The Example of the Rhine Basin
		14.3 Morphological Transformations of Rivers
			14.3.1 Primary Transformations
				14.3.1.1 Transverse Structure
				14.3.1.2 Longitudinal Structure
			14.3.2 Secondary Transformations
				14.3.2.1 Change in the Hydrological Regime
				14.3.2.2 Categories of Hydro-Technical Structures’ Impact on the Aquatic Environment
		14.4 Directory of Best Practices in the Rehabilitation of Rivers
		14.5 Examples of River Rehabilitation
			14.5.1 Renovation of the Buffer Zone of the Narew National Park (NPN), Poland
			14.5.2 Reconstruction of Meanders on Straight Sections of the Cole River, Coleshill, Counties of Oxfordshire/Wiltshire, Great Britain
			14.5.3 The REURIS Project: Restoration of the Ślepotka River
			14.5.4 Renaturation of the Isar River in Bavaria, Germany
			14.5.5 Restoration of the Hase River, the Catchment of River Ems, Lower Saxony, Germany
			14.5.6 Restoration of the Würschnitz and Chemnitz Watercourses
				14.5.6.1 Evaluation of the Watercourse Structure
				14.5.6.2 Determining the Possibility of Restoring the Watercourse
		14.6 SUMMARY AND CONCLUSIONS
		References
	Chapter 15 Torrential and Flash Flood Warning: General Overview and Uses of Localized Hydropower
		15.1 Introduction
			15.1.1 Background
		15.2 Hydrological Model Techniques for Flood Forecasting
		15.3 Examples of Flood Forecasting Models
			15.3.1 EPIC Model
			15.3.2 GloFAS Model
			15.3.3 Flood Forecasting in Europe
			15.3.4 Flood Forecasting in France
			15.3.5 Flood Forecasting in the United States
			15.3.6 Flood Forecasting in Taiwan
			15.3.7 Flood Forecasting in Africa
		15.4 Early Warning Systems at the Local Level
		15.5 Hydropower and Its Potential in Localized Early Warning
		15.6 Discussion
		15.7 Limitations and Future Work
		15.8 Summary and Conclusions
		References
Part IV Flood Hazards and Damages
	Chapter 16 Flood and Building Damages
		16.1 Introduction
			16.1.1 Provisions
			16.1.2 Interviews and Workshops
		16.2 Specifying Drying Time
		16.3 Monitoring the Moisture Content of the Material
		16.4 Drying of Flooded Buildings
			16.4.1 Background Information
			16.4.2 Methods and Equipment Used to Dry Buildings
			16.4.3 Sealing Building Parts to Help Dry
		16.5 Flood Sources and Concepts
			16.5.1 Flood Sources
			16.5.2 Infrastructure Failure
			16.5.3 Flood Inlet Routes
			16.5.4 Exterior Wall/Block Wall/Cracks in the Outer Walls
		16.6 Consequences of Flood Depth
			16.6.1 Under the Ground Floor
			16.6.2 Above the Ground Floor
		16.7 Consequences of Flood Duration
		16.8 Standards for Repair
			16.8.1 Level A Standard of Repair
			16.8.2 Level B Standard of Repair
			16.8.3 Level C Standard of Repair
		16.9 Safety, Disinfection, and Drying
		16.10 Making Safety
		16.11 The Safe Manufacturing Process Inclusion
		16.12 Disinfection
			16.12.1 Disinfection Process
		16.13 Drying
			16.13.1 Drying Process
			16.13.2 Drying of Walls
			16.13.3 Floor Drying
			16.13.4 Drying Facilities (National Facilities Services [NFS])
		16.14 Secondary Injury Prevention
			16.14.1 Density and Humidity
			16.14.2 Molds
		16.15 Post-Flood Assessment and Mitigation of Future Floods
		16.16 Specifications
			16.16.1 Electrical Services
			16.16.2 Gas
			16.16.3 Oil
			16.16.4 Water
			16.16.5 Drainage, Pipes, and Sewage
		16.17 SUMMARY AND CONCLUSIONS
		References
	Chapter 17 Flood Mapping, Monitoring, and Damage Assessment
		17.1 Introduction
			17.1.1 Types of Flood
				17.1.1.1 Flash Floods
				17.1.1.2 Riverine/Fluvial Floods
				17.1.1.3 Coastal Flood
				17.1.1.4 Urban Flood
				17.1.1.5 Ice Jam
				17.1.1.6 Glacial Lake Outbursts Flood (GLOF)
			17.1.2 Causes of Flood
		17.2 Geospatial Technology
		17.3 Role of Geospatial Technology in Flood Mapping
			17.3.1 Optical Remote Sensing
				17.3.1.1 Advantages and Disadvantage of Optical Remote Sensing Data
			17.3.2 Microwave Remote Sensing
				17.3.2.1 Advantages and Disadvantages of Microwave Remote Sensing Data
		17.4 Role of Geospatial Technology in Flood Monitoring
			17.4.1 Flood Extent
			17.4.2 Flood Duration
			17.4.3 Flood Depth
		17.5 Role of Geospatial Technology in Flood Damage Assessment
			17.5.1 Inundation in Administrative Boundaries/Spatial Damage
			17.5.2 Infrastructural Damage
			17.5.3 LULC Damage Assessment
		17.6 Summary and Conclusions
		17.7 Acknowledgments
		Note
		References
	Chapter 18 Fundamental Flood Hazard Issues in the Alluvial Fan Environment
		18.1 Introduction
		18.2 Definitions
			18.2.1 Alluvial Fan Landform
			18.2.2 Active Alluvial Fan
			18.2.3 Inactive Alluvial Fans
			18.2.4 Active Alluvial Fan Flooding
			18.2.5 Apex
			18.2.6 Flow Path Uncertainty
			18.2.7 Avulsion
			18.2.8 Fan-Like Landforms and Channel Patterns
				18.2.8.1 Alluvial Plains
				18.2.8.2 Pediments
				18.2.8.3 Distributary Flow Areas
				18.2.8.4 Sheet Flooding
				18.2.8.5 Time Scales
		18.3 Flood Processes on Alluvial Fans
			18.3.1 Riverine Flooding
			18.3.2 Distributary Flow
			18.3.3 Sheet Flooding
			18.3.4 Variable Flood Type
			18.3.5 Flow Attenuation
			18.3.6 On-Fan Flood Sources
			18.3.7 Debris Flow
			18.3.8 Sediment Deposition
			18.3.9 Avulsions
			18.3.10 Channel Erosion
		18.4 Quantifying Alluvial Fan Flood Hazards – Hazard Assessment
			18.4.1 Mapping Alluvial Fan Floodplain Limits
			18.4.2 Qualitative Assessment Techniques
			18.4.3 Hydrologic Modeling Considerations
			18.4.4 Hydraulic Modeling Considerations
			18.4.5 Advantages of Two-Dimensional Modeling
			18.4.6 Modeling Flow Attenuation
			18.4.7 FEMA FAN Model
			18.4.8 Evaluating Flow Path Uncertainty
		18.5 Floodplain Management on Alluvial Fans
			18.5.1 Flood Hazard Type
			18.5.2 Downstream Impacts
			18.5.3 Whole Fan Solutions
			18.5.4 Alternative Flood Hazard Zones
			18.5.5 Maintenance
			18.5.6 Design Frequency
		18.6 Gaps in Understanding
			18.6.1 Mud and Debris Flows
			18.6.2 Urbanized Alluvial Fans
			18.6.3 Non-Highly Active Fans
			18.6.4 Avulsion Frequency
			18.6.5 Hydrologic Modeling
			18.6.6 High Hazard/Low Hazard Areas
		18.7 Summary and Conclusions
		Note
		References
	Chapter 19 Physical Vulnerability, Flood Damage, and Adjustments: Examining the Factors Affecting Damage to Residential Buildings in Eastern Dhaka
		19.1 Introduction
		19.2 Theoretical Development and Conceptual Framework
			19.2.1 Flood Vulnerability and Flood Damage
			19.2.2 Flood Damage Reduction Measures
			19.2.3 Buildings’ Physical Vulnerability and Adjustments to Flood Damage
		19.3 Context of Dhaka
			19.3.1 Overview of Dhaka
			19.3.2 Flood Vulnerability of Eastern Dhaka
		19.4 Research Setting and Methodology
			19.4.1 Study Area
			19.4.2 Data Collection and Analysis
		19.5 Results
			19.5.1 Causes of Flooding
			19.5.2 Flood Damage to Residential Buildings
			19.5.3 Physical Attributes and Flood Damage to Residential Buildings
				19.5.3.1 Age of the Residential Buildings
				19.5.3.2 Surrounding Land Cover Condition
				19.5.3.3 The Height of Plinth Level
				19.5.3.4 Building Typology
				19.5.3.5 Buildings’ Adjustments
		19.6 Discussions
		19.7 Summary and Conclusions
		References
Part V Flood Erosion and Sediment
	Chapter 20 River Flood Erosion and Land Development and Management
		20.1 Introduction
		20.2 River Channels and Climate Changes
		20.3 Positive and Negative Effects of Weathering and Erosion
		20.4 Flood Erosion, Land Vulnerability, and Risk
			20.4.1 Intrinsic Vulnerability
			20.4.2 Integrated Vulnerability
			20.4.3 Risk
		20.5 Erosion Control and Flood Risk Management (FRM)
			20.5.1 Remediation and Land Reclamation
			20.5.2 Erosion Control Measures
		20.6 Zoning Criteria
		20.7 Discussions
		20.8 Conclusions
		References
	Chapter 21 Debris and Solid Wastes in Flood Plain Management
		21.1 Introduction
		21.2 Flood and Floodplain
		21.3 Debris and Solid Waste
			21.3.1 Debris Definition and Types
			21.3.2 Solid Waste Definition and Types
		21.4 Importance of Debris and Solid Waste Management
		21.5 Debris and Solid Waste Management
			21.5.1 Objectives of Debris and Solid Waste Management
			21.5.2 Ordering and Time-Tabling of the Management Plan
			21.5.3 Environmental Impacts
			21.5.4 Economic Issues
			21.5.5 Financial Features: Funding Methods
			21.5.6 Social Issues
			21.5.7 Organizational and Coordination Structures
			21.5.8 Legislative Issues
		21.6 Management Strategy
			21.6.1 Debris Management
			21.6.2 Solid Waste Management
		21.7 The Hierarchy of Waste Management
		21.8 Management Activities
			21.8.1 Generation of Waste
			21.8.2 Segregation and Recycling of Waste
			21.8.3 Collection of Waste
			21.8.4 Transfer and Transportation of Waste
			21.8.5 Treatment or Processing of Waste
			21.8.6 Disposal of Waste
		21.9 Summary and Conclusions
		References
	Chapter 22 A Sedimentary Investigation into the Origin and Composition of a Dam Reservoir
		22.1 Introduction
		22.2 The Phenomenon of Sedimentation
		22.3 Sediment Physical Analysis (Particle Size Analysis)
			22.3.1 Natural Origin
			22.3.2 Anthropogenic Origin
			22.3.3 Sediment Composition
		22.4 Origin of Sediment in Dams
			22.4.1 Physical Factors
				22.4.1.1 A Climate of Heavy Precipitation
				22.4.1.2 An Important Vegetation Cover
				22.4.1.3 Easily Movable Soils
				22.4.1.4 Marked Topography Accelerating the Displacement of the Mobilized Materials
			22.4.2 Anthropogenic Factors
				22.4.2.1 A Strong Demographic Pressure
				22.4.2.2 The Massive Clearing of Wooded Areas
				22.4.2.3 Fires and Overgrazing
		22.5 Cultivation Techniques
		22.6 Means of Combating Siltation
		22.7 Evacuation of Sediments as They Arrive
		22.8 Dredging
		22.9 Case Studies
			22.9.1 Example 1: Origin of Solid Transport and Sedimentation in the Watershed of the Wadi Mina
				22.9.1.1 Study Area
				22.9.1.2 Data Used and Methods of Quantification
		22.10 Discussion
			22.10.1 Where Do the Sediments of the Dam Originate?
		22.11 Summary and Conclusions
		References
	Chapter 23 Sedimentation and Geomorphological Changes During Floods
		23.1 Introduction
		23.2 Extreme Rainfall and Flood in the Darjeeling Himalayas on October 2–5, 1968
		23.3 Role of Clustering of the Floods of Various Duration and Frequency – Their Sedimentological and Erosional Effects
		23.4 SUMMARY AND CONCLUSIONS
		References
Part VI Flooding and Dam Construction
	Chapter 24 Dam Failure Assessment for Sustainable Flood Retention Basins
		24.1 Introduction
			24.1.1 Background
			24.1.2 Aim and Objectives
		24.2 Methodology
			24.2.1 Data Collection
			24.2.2 Quick Screening Tool for Determining SFRB Dam Failure
			24.2.3 Ordinary Kriging
		24.3 Example Results and Discussion
			24.3.1 Dam Failure Assessment for Different Types of SFRB
			24.3.2 Spatial Distribution of the Hazard and Risk of Dam Failure
			24.3.3 Risk Categories
		24.4 Summary and Conclusions
		24.5 Acknowledgments
		References
	Chapter 25 Simulating Flood Due to Dam Break
		25.1 Introduction
		25.2 Numerical Models
			25.2.1 SPH Equations
			25.2.2 Lagrange Multipliers for SPH Boundaries
			25.2.3 RANS and LES Equations
			25.2.4 VOF Equations
		25.3 Description of Models Used in Experimental Studies
		25.4 Results
			25.4.1 Free Surface Profiles
			25.4.2 Velocity Calculations
			25.4.3 Pressure Calculations
		25.5 Discussions
		25.6 Summary and Conclusions
		References
	Chapter 26 Modeling the Propagation of the Submersion Wave in Case of a Dam Break: Case of the Gargar Dam, Algeria
		26.1 Introduction
		26.2 Description of Mathematical Model
		26.3 Presentation of the Program
			26.3.1 Numerical Application
		26.4 SORB Program
		26.5 Computer Code CASTOR
		26.6 Summary and Conclusions
		References
	Chapter 27 River Restoration for Flood Impact Mitigation
		27.1 Introduction
		27.2 River Restoration: Basic Concepts
		27.3 Brief Overview of River Restoration
		27.4 River Restoration for Flood Impact Mitigation
		27.5 SUMMARY AND CONCLUSIONS
		References
Index




نظرات کاربران