دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Rama K. Yedavalli
سری: Aerospace Series
ISBN (شابک) : 1118934458, 9781118934456
ناشر: Wiley
سال نشر: 2020
تعداد صفحات: 556
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی (): هوافضا
در صورت تبدیل فایل کتاب Flight Dynamics and Control of Aero and Space Vehicles (Aerospace Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دینامیک و کنترل وسایل نقلیه پروازی
راما ک. یداوالی، دانشگاه ایالتی اوهایو، ایالات متحده
کتاب درسی جامع که دینامیک و کنترل وسیله نقلیه پرواز را در یک چارچوب یکپارچه ارائه می دهد
دینامیک و کنترل وسیله نقلیه پرواز دینامیک و کنترل وسایل نقلیه پروازی مختلف از جمله هواپیما، فضاپیما، هلیکوپتر، موشک و غیره در یک چارچوب یکپارچه. این کتاب موضوعات اساسی در دینامیک و کنترل این وسایل نقلیه پروازی را پوشش می دهد، نقاط مشترک و همچنین تفاوت در مسائل دینامیک و کنترل را برجسته می کند و از دیدگاه "سطح سیستم" استفاده می کند.
کتاب با معادلات حرکت را برای یک جسم صلب کلی استخراج می کند و سپس تفاوت های بین دینامیک وسایل نقلیه پروازی مختلف را به روشی اساسی ترسیم می کند. سپس بر روی معادلات دینامیکی با کاربرد در این وسایل نقلیه پروازی مختلف تمرکز می کند و بیشتر بر روی موارد هواپیما و فضاپیما تمرکز می کند. سپس تجزیه و تحلیل و طراحی سیستم های کنترلی هم از دیدگاه عملکرد انتقال، کنترل کلاسیک و همچنین از دیدگاه کنترل فضای حالت مدرن انجام می شود. نمونههای گویا از کاربرد در وسایل نقلیه جوی و فضایی با تأکید بر دیدگاه «سطح سیستم» از طراحی کنترل ارائه شدهاند.
ویژگیهای کلیدی:
این کتاب برای دانشجویان مقطع کارشناسی در رشتههای مکانیک و یک مطالعه ضروری است. مهندسی هوافضا، مهندسانی که روی کنترل وسایل نقلیه پروازی کار می کنند، و محققانی از سایر زمینه های مهندسی که روی موضوعات مرتبط کار می کنند.
Flight Vehicle Dynamics and Control
Rama K. Yedavalli, The Ohio State University, USA
A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework
Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint.
The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design.
Key features:
The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.
Contents Preface Perspective of the Book Part I Flight Vehicle Dynamics Roadmap to Part I 1 An Overview of the Fundamental Concepts of Modeling of a Dynamic System 1.1 Chapter Highlights 1.2 Stages of a Dynamic SystemInvestigation and Approximations 1.3 Concepts Needed to Derive Equations of Motion 1.4 Illustrative Example 1.5 Further Insight into Absolute Acceleration 1.6 Chapter Summary 1.7 Exercises Bibliography 2 Basic Nonlinear Equations of Motion in Three Dimensional Space 2.1 Chapter Highlights 2.2 Derivation of Equations of Motion for a General Rigid Body 2.3 Specialization of Equations of Motion to Aero (Atmospheric) Vehicles 2.4 Specialization of Equations of Motion to Spacecraft 2.5 Flight Vehicle Dynamic Models in State Space Representation 2.6 Chapter Summary 2.7 Exercises Bibliography 3 Linearization and Stability of Linear Time Invariant Systems 3.1 Chapter Highlights 3.2 State Space Representation of Dynamic Systems 3.3 Linearizing a Nonlinear State Space Model 3.4 Uncontrolled, Natural Dynamic Response and Stability of First and Second Order Linear Dynamic Systems with State Space Repre 3.5 Chapter Summary 3.6 Exercises Bibliography 4 Aircraft Static Stability and Control 4.1 Chapter Highlights 4.2 Analysis of Equilibrium (Trim) Flight for Aircraft: Static Stability and Control 4.3 Static Longitudinal Stability 4.4 Stick Fixed Neutral Point and CG Travel Limits 4.5 Static Longitudinal Control with Elevator Deflection 4.6 Reversible Flight Control Systems: Stick Free, Stick Force Considerations 4.7 Static Directional Stability and Control 4.8 Engine Out Rudder/Aileron Power Determination: Minimum Control Speed, 4.9 Chapter Summary 4.10 Exercises Bibliography 5 Aircraft Dynamic Stability and Control via Linearized Models 5.1 Chapter Highlights 5.2 Analysis of Perturbed Flight from Trim: Aircraft Dynamic Stability and Control 5.3 Linearized Equations of Motion in Terms of Stability Derivatives For the Steady, Level Equilibrium Condition 5.4 State Space Representation for Longitudinal Motion and Modes of Approximation 5.5 State Space Representation for Lateral/Directional Motion and Modes of Approximation 5.6 Chapter Summary 5.7 Exercises Bibliography 6 Spacecraft Passive Stabilization and Control 6.1 Chapter Highlights 6.2 Passive Methods for Satellite Attitude Stabilization and Control 6.3 Stability Conditions for Linearized Models of Single Spin Stabilized Satellites 6.4 Stability Conditions for a Dual Spin Stabilized Satellite 6.5 Chapter Summary 6.6 Exercises Bibliography 7 Spacecraft Dynamic Stability and Control via Linearized Models 7.1 Chapter Highlights 7.2 Active Control: Three Axis Stabilization and Control 7.3 Linearized Translational Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design 7.4 Linearized Rotational (Attitude) Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design 7.5 Open Loop (Uncontrolled Motion) Behavior of Spacecraft Models 7.6 External Torque Analysis: Control Torques Versus Disturbance Torques 7.7 Chapter Summary 7.8 Exercises Bibliography Part II Fight Vehicle Control via Classical Transfer Function Based Methods Roadmap to Part II 8 Transfer Function Based Linear Control Systems 8.1 Chapter Highlights 8.2 Poles and Zeroes in Transfer Functions and Their Role in the Stability and Time Response of Systems 8.3 Transfer Functions for Aircraft Dynamics Application 8.4 Transfer Functions for Spacecraft Dynamics Application 8.5 Chapter Summary 8.6 Exercises Bibliography 9 Block DiagramRepresentation of Control Systems 9.1 Chapter Highlights 9.2 Standard Block Diagramof a Typical Control System 9.3 Time Domain Performance Specifications in Control Systems 9.4 Typical Controller Structures in SISO Control Systems 9.5 Chapter Summary 9.6 Exercises Bibliography 10 Stability Testing of Polynomials 10.1 Chapter Highlights 10.2 Coefficient Tests for Stability: Routh–Hurwitz Criterion 10.3 Left Column Zeros of the Array 10.4 Imaginary Axis Roots 10.5 Adjustable Systems 10.6 Chapter Summary 10.7 Exercises Bibliography 11 Root Locus Technique for Control Systems Analysis and Design 11.1 Chapter Highlights 11.2 Introduction 11.3 Properties of the Root Locus 11.4 Sketching the Root Locus 11.5 Refining the Sketch 11.6 Control Design using the Root Locus Technique 11.7 Using MATLAB to Draw the Root Locus 11.8 Chapter Summary 11.9 Exercises Bibliography 12 Frequency Response Analysis and Design 12.1 Chapter Highlights 12.2 Introduction 12.3 Frequency Response Specifications 12.4 Advantages ofWorking with the Frequency Response in Terms of Bode Plots 12.5 Examples on Frequency Response 12.6 Stability: Gain and Phase Margins 12.7 Notes on Lead and Lag Compensation via Bode Plots 12.8 Chapter Summary 12.9 Exercises Bibliography 13 Applications of Classical Control Methods to Aircraft Control 13.1 Chapter Highlights 13.2 Aircraft Flight Control Systems (AFCS) 13.3 Longitudinal Control Systems 13.4 Control Theory Application to Automatic Landing Control SystemDesign 13.5 Lateral/Directional Autopilots 13.6 Chapter Summary Bibliography 14 Application of Classical Control Methods to Spacecraft Control 14.1 Chapter Highlights 14.2 Control of an Earth Observation Satellite Using a MomentumWheel and Offset Thrusters: Case Study 14.3 Chapter Summary Bibliography Part III Flight Vehicle Control via Modern State Space Based Methods Roadmap to Part III 15 Time Domain, State Space Control Theory 15.1 Chapter Highlights 15.2 Introduction to State Space Control Theory 15.3 State Space Representation in Companion Form: Continuous Time Systems 15.4 State Space Representation of Discrete Time (Difference) Equations 15.5 State Space Representation of Simultaneous Differential Equations 15.6 State Space Equations from Transfer Functions 15.7 Linear Transformations of State Space Representations 15.8 Linearization of Nonlinear State Space Systems 15.9 Chapter Summary 15.10 Exercises Bibliography 16 Dynamic Response of Linear State Space Systems (Including Discrete Time Systems and Sampled Data Systems) 16.1 Chapter Highlights 16.2 Introduction to Dynamic Response: Continuous Time Systems 16.3 Solutions of Linear Constant Coefficient Differential Equations in State Space Form 16.4 Determination of State Transition Matrices Using the Cayley–Hamilton Theorem 16.5 Response of a Constant Coefficient (Time Invariant) Discrete Time State Space System 16.6 Discretizing a Continuous Time System: Sampled Data Systems 16.7 Chapter Summary 16.8 Exercises Bibliography 17 Stability of Dynamic Systems with State Space Representation with Emphasis on Linear Systems 17.1 Chapter Highlights 17.2 Stability of Dynamic Systems via Lyapunov Stability Concepts 17.3 Stability Conditions for Linear Time Invariant Systems with State Space Representation 17.4 Stability Conditions for Quasi-linear (Periodic) Systems 17.5 Stability of Linear, Possibly Time Varying, Systems 17.6 Bounded Input–Bounded State Stability (BIBS) and Bounded Input–Bounded Output Stability (BIBO) 17.7 Chapter Summary 17.8 Exercises Bibliography 18 Controllability, Stabilizability, Observability, and Detectability 18.1 Chapter Highlights 18.2 Controllability of Linear State Space Systems 18.3 State Controllability Test via Modal Decomposition 18.4 Normality or Normal Linear Systems 18.5 Stabilizability of Uncontrollable Linear State Space Systems 18.6 Observability of Linear State Space Systems 18.7 State Observability Test viaModal Decomposition 18.8 Detectability of Unobservable Linear State Space Systems 18.9 Implications and Importance of Controllability and Observability 18.10 A Display of all Three Structural Properties via Modal Decomposition 18.11 Chapter Summary 18.12 Exercises Bibliography 19 Shaping of Dynamic Response by Control Design: Pole (Eigenvalue) Placement Technique 19.1 Chapter Highlights 19.2 Shaping of Dynamic Response of State Space Systems using Control Design 19.3 Single Input Full State Feedback Case: Ackermann’s Formula for Gain 19.4 Pole (Eigenvalue) Assignment using Full State Feedback: MIMO Case 19.5 Chapter Summary 19.6 Exercises Bibliography 20 Linear Quadratic Regulator (LQR) Optimal Control 20.1 Chapter Highlights 20.2 Formulation of the Optimum Control Problem 20.3 Quadratic Integrals and Matrix Differential Equations 20.4 The Optimum Gain Matrix 20.5 The Steady State Solution 20.6 Disturbances and Reference Inputs 20.7 Trade-Off Curve Between State Regulation Cost and Control Effort 20.8 Chapter Summary 20.9 Exercises Bibliography 21 Control Design Using Observers 21.1 Chapter Highlights 21.2 Observers or Estimators and Their Use in Feedback Control Systems 21.3 Other Controller Structures: Dynamic Compensators of Varying Dimensions 21.4 Spillover Instabilities in Linear State Space Dynamic Systems 21.5 Chapter Summary 21.6 Exercises Bibliography 22 State Space Control Design: Applications to Aircraft Control 22.1 Chapter Highlights 22.2 LQR Controller Design for Aircraft Control Application 22.3 Pole Placement Design for Aircraft Control Application 22.4 Chapter Summary 22.5 Exercises Bibliography 23 State Space Control Design: Applications to Spacecraft Control 23.1 Chapter Highlights 23.2 Control Design for Multiple Satellite Formation Flying 23.3 Chapter Summary 23.4 Exercises Bibliography Part IV Other Related Flight Vehicles Roadmap to Part IV 24 Tutorial on Aircraft Flight Control by Boeing 24.1 Tutorial Highlights 24.2 SystemOverview 24.3 SystemElectrical Power 24.4 Control Laws and SystemFunctionality 24.5 Tutorial Summary Bibliography 25 Tutorial on Satellite Control Systems 25.1 Tutorial Highlights 25.2 Spacecraft/Satellite Building Blocks 25.3 Attitude Actuators 25.4 Considerations in Using Momentum Exchange Devices and Reaction Jet Thrusters for Active Control 25.5 Tutorial Summary Bibliography 26 Tutorial on Other Flight Vehicles 26.1 Tutorial on Helicopter (Rotorcraft) Flight Control Systems 26.2 Tutorial on Quadcopter Dynamics and Control 26.3 Tutorial on Missile Dynamics and Control 26.4 Tutorial on Hypersonic Vehicle Dynamics and Control Bibliography Appendices Appendix A Data for Flight Vehicles A.1 Data for Several Aircraft A.2 Data for Selected Satellites Appendix B Brief Review of Laplace Transform Theory B.1 Introduction B.2 Basics of Laplace Transforms B.3 Inverse Laplace Transformation using the Partial Fraction Expansion Method B.4 Exercises Appendix C A Brief Review of Matrix Theory and Linear Algebra C.1 Matrix Operations, Properties, and Forms C.2 Linear Independence and Rank C.3 Eigenvalues and Eigenvectors C.4 Definiteness of Matrices C.5 Singular Values C.6 Vector Norms C.7 Simultaneous Linear Equations C.8 Exercises Bibliography Appendix D Useful MATLAB Commands D.1 Author Supplied Matlab Routine for Formation of Fuller Matrices D.2 Available Standard Matlab Commands Index