ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Flight Dynamics and Control of Aero and Space Vehicles (Aerospace Series)

دانلود کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی ()

Flight Dynamics and Control of Aero and Space Vehicles (Aerospace Series)

مشخصات کتاب

Flight Dynamics and Control of Aero and Space Vehicles (Aerospace Series)

ویرایش: 1 
نویسندگان:   
سری: Aerospace Series 
ISBN (شابک) : 1118934458, 9781118934456 
ناشر: Wiley 
سال نشر: 2020 
تعداد صفحات: 556 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 3 مگابایت 

قیمت کتاب (تومان) : 52,000



کلمات کلیدی مربوط به کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی (): هوافضا



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Flight Dynamics and Control of Aero and Space Vehicles (Aerospace Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب دینامیک پرواز و کنترل وسایل نقلیه هوایی و فضایی ()



دینامیک و کنترل وسایل نقلیه پروازی

راما ک. یداوالی، دانشگاه ایالتی اوهایو، ایالات متحده

کتاب درسی جامع که دینامیک و کنترل وسیله نقلیه پرواز را در یک چارچوب یکپارچه ارائه می دهد 

دینامیک و کنترل وسیله نقلیه پرواز  دینامیک و کنترل وسایل نقلیه پروازی مختلف از جمله هواپیما، فضاپیما، هلیکوپتر، موشک و غیره در یک چارچوب یکپارچه. این کتاب موضوعات اساسی در دینامیک و کنترل این وسایل نقلیه پروازی را پوشش می دهد، نقاط مشترک و همچنین تفاوت در مسائل دینامیک و کنترل را برجسته می کند و از دیدگاه "سطح سیستم" استفاده می کند.

کتاب با معادلات حرکت را برای یک جسم صلب کلی استخراج می کند و سپس تفاوت های بین دینامیک وسایل نقلیه پروازی مختلف را به روشی اساسی ترسیم می کند. سپس بر روی معادلات دینامیکی با کاربرد در این وسایل نقلیه پروازی مختلف تمرکز می کند و بیشتر بر روی موارد هواپیما و فضاپیما تمرکز می کند. سپس تجزیه و تحلیل و طراحی سیستم های کنترلی هم از دیدگاه عملکرد انتقال، کنترل کلاسیک و همچنین از دیدگاه کنترل فضای حالت مدرن انجام می شود. نمونه‌های گویا از کاربرد در وسایل نقلیه جوی و فضایی با تأکید بر دیدگاه «سطح سیستم» از طراحی کنترل ارائه شده‌اند.

ویژگی‌های کلیدی:

  • بررسی جامعی از دینامیک و دینامیک ارائه می‌دهد. کنترل وسایل نقلیه پروازی مختلف در یک جلد.
  • شامل مثال‌های کار شده (از جمله مثال‌های متلب) و مشکلات تکالیف پایان فصل است.
  • مناسب به عنوان یک کتاب درسی واحد برای دوره‌ای از دوره کارشناسی دوره‌های دینامیک و کنترل وسایل نقلیه پروازی.
  • همراه با وب‌سایتی که شامل مشکلات اضافی و راهنمای راه‌حل‌ها می‌شود.

این کتاب برای دانشجویان مقطع کارشناسی در رشته‌های مکانیک و یک مطالعه ضروری است. مهندسی هوافضا، مهندسانی که روی کنترل وسایل نقلیه پروازی کار می کنند، و محققانی از سایر زمینه های مهندسی که روی موضوعات مرتبط کار می کنند.


توضیحاتی درمورد کتاب به خارجی

Flight Vehicle Dynamics and Control

Rama K. Yedavalli, The Ohio State University, USA

A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework 

Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint.

The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design.

Key features:

  • Provides a comprehensive treatment of dynamics and control of various flight vehicles in a single volume.
  • Contains worked out examples (including MATLAB examples) and end of chapter homework problems.
  • Suitable as a single textbook for a sequence of undergraduate courses on flight vehicle dynamics and control.
  • Accompanied by a website that includes additional problems and a solutions manual.

The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.



فهرست مطالب

Contents
Preface
Perspective of the Book
Part I Flight Vehicle Dynamics
	Roadmap to Part I
	1 An Overview of the Fundamental Concepts of Modeling of a Dynamic System
		1.1 Chapter Highlights
		1.2 Stages of a Dynamic SystemInvestigation and Approximations
		1.3 Concepts Needed to Derive Equations of Motion
		1.4 Illustrative Example
		1.5 Further Insight into Absolute Acceleration
		1.6 Chapter Summary
		1.7 Exercises
		Bibliography
	2 Basic Nonlinear Equations of Motion in Three Dimensional Space
		2.1 Chapter Highlights
		2.2 Derivation of Equations of Motion for a General Rigid Body
		2.3 Specialization of Equations of Motion to Aero (Atmospheric) Vehicles
		2.4 Specialization of Equations of Motion to Spacecraft
		2.5 Flight Vehicle Dynamic Models in State Space Representation
		2.6 Chapter Summary
		2.7 Exercises
		Bibliography
	3 Linearization and Stability of Linear Time Invariant Systems
		3.1 Chapter Highlights
		3.2 State Space Representation of Dynamic Systems
		3.3 Linearizing a Nonlinear State Space Model
		3.4 Uncontrolled, Natural Dynamic Response and Stability of First and Second Order Linear Dynamic Systems with State Space Repre
		3.5 Chapter Summary
		3.6 Exercises
		Bibliography
	4 Aircraft Static Stability and Control
		4.1 Chapter Highlights
		4.2 Analysis of Equilibrium (Trim) Flight for Aircraft: Static Stability and Control
		4.3 Static Longitudinal Stability
		4.4 Stick Fixed Neutral Point and CG Travel Limits
		4.5 Static Longitudinal Control with Elevator Deflection
		4.6 Reversible Flight Control Systems: Stick Free, Stick Force Considerations
		4.7 Static Directional Stability and Control
		4.8 Engine Out Rudder/Aileron Power Determination: Minimum Control Speed,
		4.9 Chapter Summary
		4.10 Exercises
		Bibliography
	5 Aircraft Dynamic Stability and Control via Linearized Models
		5.1 Chapter Highlights
		5.2 Analysis of Perturbed Flight from Trim: Aircraft Dynamic Stability and Control
		5.3 Linearized Equations of Motion in Terms of Stability Derivatives For the Steady, Level Equilibrium Condition
		5.4 State Space Representation for Longitudinal Motion and Modes of Approximation
		5.5 State Space Representation for Lateral/Directional Motion and Modes of Approximation
		5.6 Chapter Summary
		5.7 Exercises
		Bibliography
	6 Spacecraft Passive Stabilization and Control
		6.1 Chapter Highlights
		6.2 Passive Methods for Satellite Attitude Stabilization and Control
		6.3 Stability Conditions for Linearized Models of Single Spin Stabilized Satellites
		6.4 Stability Conditions for a Dual Spin Stabilized Satellite
		6.5 Chapter Summary
		6.6 Exercises
		Bibliography
	7 Spacecraft Dynamic Stability and Control via Linearized Models
		7.1 Chapter Highlights
		7.2 Active Control: Three Axis Stabilization and Control
		7.3 Linearized Translational Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design
		7.4 Linearized Rotational (Attitude) Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design
		7.5 Open Loop (Uncontrolled Motion) Behavior of Spacecraft Models
		7.6 External Torque Analysis: Control Torques Versus Disturbance Torques
		7.7 Chapter Summary
		7.8 Exercises
		Bibliography
Part II Fight Vehicle Control via Classical Transfer Function Based Methods
	Roadmap to Part II
	8 Transfer Function Based Linear Control Systems
		8.1 Chapter Highlights
		8.2 Poles and Zeroes in Transfer Functions and Their Role in the Stability and Time Response of Systems
		8.3 Transfer Functions for Aircraft Dynamics Application
		8.4 Transfer Functions for Spacecraft Dynamics Application
		8.5 Chapter Summary
		8.6 Exercises
		Bibliography
	9 Block DiagramRepresentation of Control Systems
		9.1 Chapter Highlights
		9.2 Standard Block Diagramof a Typical Control System
		9.3 Time Domain Performance Specifications in Control Systems
		9.4 Typical Controller Structures in SISO Control Systems
		9.5 Chapter Summary
		9.6 Exercises
		Bibliography
	10 Stability Testing of Polynomials
		10.1 Chapter Highlights
		10.2 Coefficient Tests for Stability: Routh–Hurwitz Criterion
		10.3 Left Column Zeros of the Array
		10.4 Imaginary Axis Roots
		10.5 Adjustable Systems
		10.6 Chapter Summary
		10.7 Exercises
		Bibliography
	11 Root Locus Technique for Control Systems Analysis and Design
		11.1 Chapter Highlights
		11.2 Introduction
		11.3 Properties of the Root Locus
		11.4 Sketching the Root Locus
		11.5 Refining the Sketch
		11.6 Control Design using the Root Locus Technique
		11.7 Using MATLAB to Draw the Root Locus
		11.8 Chapter Summary
		11.9 Exercises
		Bibliography
	12 Frequency Response Analysis and Design
		12.1 Chapter Highlights
		12.2 Introduction
		12.3 Frequency Response Specifications
		12.4 Advantages ofWorking with the Frequency Response in Terms of Bode Plots
		12.5 Examples on Frequency Response
		12.6 Stability: Gain and Phase Margins
		12.7 Notes on Lead and Lag Compensation via Bode Plots
		12.8 Chapter Summary
		12.9 Exercises
		Bibliography
	13 Applications of Classical Control Methods to Aircraft Control
		13.1 Chapter Highlights
		13.2 Aircraft Flight Control Systems (AFCS)
		13.3 Longitudinal Control Systems
		13.4 Control Theory Application to Automatic Landing Control SystemDesign
		13.5 Lateral/Directional Autopilots
		13.6 Chapter Summary
		Bibliography
	14 Application of Classical Control Methods to Spacecraft Control
		14.1 Chapter Highlights
		14.2 Control of an Earth Observation Satellite Using a MomentumWheel and Offset Thrusters: Case Study
		14.3 Chapter Summary
		Bibliography
Part III Flight Vehicle Control via Modern State Space Based Methods
	Roadmap to Part III
	15 Time Domain, State Space Control Theory
		15.1 Chapter Highlights
		15.2 Introduction to State Space Control Theory
		15.3 State Space Representation in Companion Form: Continuous Time Systems
		15.4 State Space Representation of Discrete Time (Difference) Equations
		15.5 State Space Representation of Simultaneous Differential Equations
		15.6 State Space Equations from Transfer Functions
		15.7 Linear Transformations of State Space Representations
		15.8 Linearization of Nonlinear State Space Systems
		15.9 Chapter Summary
		15.10 Exercises
		Bibliography
	16 Dynamic Response of Linear State Space Systems (Including Discrete Time Systems and Sampled Data Systems)
		16.1 Chapter Highlights
		16.2 Introduction to Dynamic Response: Continuous Time Systems
		16.3 Solutions of Linear Constant Coefficient Differential Equations in State Space Form
		16.4 Determination of State Transition Matrices Using the Cayley–Hamilton Theorem
		16.5 Response of a Constant Coefficient (Time Invariant) Discrete Time State Space System
		16.6 Discretizing a Continuous Time System: Sampled Data Systems
		16.7 Chapter Summary
		16.8 Exercises
		Bibliography
	17 Stability of Dynamic Systems with State Space Representation with Emphasis on Linear Systems
		17.1 Chapter Highlights
		17.2 Stability of Dynamic Systems via Lyapunov Stability Concepts
		17.3 Stability Conditions for Linear Time Invariant Systems with State Space Representation
		17.4 Stability Conditions for Quasi-linear (Periodic) Systems
		17.5 Stability of Linear, Possibly Time Varying, Systems
		17.6 Bounded Input–Bounded State Stability (BIBS) and Bounded Input–Bounded Output Stability (BIBO)
		17.7 Chapter Summary
		17.8 Exercises
		Bibliography
	18 Controllability, Stabilizability, Observability, and Detectability
		18.1 Chapter Highlights
		18.2 Controllability of Linear State Space Systems
		18.3 State Controllability Test via Modal Decomposition
		18.4 Normality or Normal Linear Systems
		18.5 Stabilizability of Uncontrollable Linear State Space Systems
		18.6 Observability of Linear State Space Systems
		18.7 State Observability Test viaModal Decomposition
		18.8 Detectability of Unobservable Linear State Space Systems
		18.9 Implications and Importance of Controllability and Observability
		18.10 A Display of all Three Structural Properties via Modal Decomposition
		18.11 Chapter Summary
		18.12 Exercises
		Bibliography
	19 Shaping of Dynamic Response by Control Design: Pole (Eigenvalue) Placement Technique
		19.1 Chapter Highlights
		19.2 Shaping of Dynamic Response of State Space Systems using Control Design
		19.3 Single Input Full State Feedback Case: Ackermann’s Formula for Gain
		19.4 Pole (Eigenvalue) Assignment using Full State Feedback: MIMO Case
		19.5 Chapter Summary
		19.6 Exercises
		Bibliography
	20 Linear Quadratic Regulator (LQR) Optimal Control
		20.1 Chapter Highlights
		20.2 Formulation of the Optimum Control Problem
		20.3 Quadratic Integrals and Matrix Differential Equations
		20.4 The Optimum Gain Matrix
		20.5 The Steady State Solution
		20.6 Disturbances and Reference Inputs
		20.7 Trade-Off Curve Between State Regulation Cost and Control Effort
		20.8 Chapter Summary
		20.9 Exercises
		Bibliography
	21 Control Design Using Observers
		21.1 Chapter Highlights
		21.2 Observers or Estimators and Their Use in Feedback Control Systems
		21.3 Other Controller Structures: Dynamic Compensators of Varying Dimensions
		21.4 Spillover Instabilities in Linear State Space Dynamic Systems
		21.5 Chapter Summary
		21.6 Exercises
		Bibliography
	22 State Space Control Design: Applications to Aircraft Control
		22.1 Chapter Highlights
		22.2 LQR Controller Design for Aircraft Control Application
		22.3 Pole Placement Design for Aircraft Control Application
		22.4 Chapter Summary
		22.5 Exercises
		Bibliography
	23 State Space Control Design: Applications to Spacecraft Control
		23.1 Chapter Highlights
		23.2 Control Design for Multiple Satellite Formation Flying
		23.3 Chapter Summary
		23.4 Exercises
		Bibliography
Part IV Other Related Flight Vehicles
	Roadmap to Part IV
	24 Tutorial on Aircraft Flight Control by Boeing
		24.1 Tutorial Highlights
		24.2 SystemOverview
		24.3 SystemElectrical Power
		24.4 Control Laws and SystemFunctionality
		24.5 Tutorial Summary
		Bibliography
	25 Tutorial on Satellite Control Systems
		25.1 Tutorial Highlights
		25.2 Spacecraft/Satellite Building Blocks
		25.3 Attitude Actuators
		25.4 Considerations in Using Momentum Exchange Devices and Reaction Jet Thrusters for Active Control
		25.5 Tutorial Summary
		Bibliography
	26 Tutorial on Other Flight Vehicles
		26.1 Tutorial on Helicopter (Rotorcraft) Flight Control Systems
		26.2 Tutorial on Quadcopter Dynamics and Control
		26.3 Tutorial on Missile Dynamics and Control
		26.4 Tutorial on Hypersonic Vehicle Dynamics and Control
		Bibliography
Appendices
	Appendix A Data for Flight Vehicles
		A.1 Data for Several Aircraft
		A.2 Data for Selected Satellites
	Appendix B Brief Review of Laplace Transform Theory
		B.1 Introduction
		B.2 Basics of Laplace Transforms
		B.3 Inverse Laplace Transformation using the Partial Fraction Expansion Method
		B.4 Exercises
	Appendix C A Brief Review of Matrix Theory and Linear Algebra
		C.1 Matrix Operations, Properties, and Forms
		C.2 Linear Independence and Rank
		C.3 Eigenvalues and Eigenvectors
		C.4 Definiteness of Matrices
		C.5 Singular Values
		C.6 Vector Norms
		C.7 Simultaneous Linear Equations
		C.8 Exercises
		Bibliography
	Appendix D Useful MATLAB Commands
		D.1 Author Supplied Matlab Routine for Formation of Fuller Matrices
		D.2 Available Standard Matlab Commands
Index




نظرات کاربران