دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Hongliang Ren
سری:
ISBN (شابک) : 0128175958, 9780128175958
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 509
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رباتیک انعطاف پذیر در پزشکی: سفر طراحی مکانیسم های تولید حرکت و توسعه سیستم بیوروباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
رباتیک انعطافپذیر در پزشکی: سفر طراحی مکانیسمهای تولید حرکت و توسعه سیستم بیوروباتیک منبعی از دانش و نمونههای اولیه موفق در مورد رباتهای انعطافپذیر در پزشکی ارائه میکند. با توجه به استفاده فزاینده متخصصان در زمینه پزشکی از رباتیک در روش های پزشکی، بهبود دانش فعلی در مورد فن آوری های موجود حیاتی است. این کتاب پیشینه، الزامات پزشکی، اصول مهندسی زیست پزشکی، و تحقیقات جدید در مورد ربات های نرم، از جمله سیستم های رباتیک انعطاف پذیر عمومی، مشخصات طراحی، منطق طراحی، ساخت، آزمایش های تایید، محرک ها و حسگرها در سیستم های رباتیک پزشکی انعطاف پذیر را پوشش می دهد.
با ارائه چندین پروژه به عنوان نمونه، نویسندگان همچنین در مورد خط لوله توسعه یک سیستم روباتیک پزشکی، از جمله نقاط عطف مهم مانند مقررات مربوط، طبقه بندی دستگاه ها و استانداردهای پزشکی بحث می کنند.
Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems.
Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards.
Flexible Robotics in Medicine Copyright Contents List of Contributors Preface: A design journey of biorobotic motion generation mechanisms and flexible continuum system development 1 Slender snake-like endoscopic robots in surgery 1.1 Introduction 1.2 Snake-like robots for surgery 1.2.1 Commercial products 1.2.2 Typical mechanical design 1.2.2.1 Tendon-driven mechanisms for surgical robots 1.2.2.2 Motor-actuated articulated snake-like mechanism 1.2.3 Novel design and platforms 1.3 Modeling of snake-like surgical robots 1.3.1 Kinematics 1.3.2 Statics and dynamics 1.3.3 Hysteresis and compensation 1.4 Human–machine interaction 1.4.1 Shape/force sensing 1.4.2 Motion planning 1.4.3 Control 1.4.3.1 Controlling variables 1.4.3.2 Controllers and their evolution 1.5 Conclusion References 2 Prototyping soft origami quad-bellows robots from single-bellows characterization 2.1 Introduction 2.2 Literature review 2.2.1 Soft robots and origami 2.2.2 Actuation 2.2.3 Colonoscopy and anatomical models 2.3 Methodology 2.3.1 Gait selection 2.3.1.1 Snake’s rectilinear locomotion 2.3.1.2 Snake’s concertina locomotion 2.3.2 Bellows design 2.3.2.1 Origami pattern 2.3.2.2 Actuation method 2.3.3 Material selection 2.3.4 Colon phantom 2.4 Results and discussion 2.4.1 Actuation of the individual bellows unit 2.4.2 Borescope through colon model components 2.4.3 Future directions of study 2.5 Conclusion Acknowledgment References 3 Cable-driven flexible endoscope utilizing diamond-shaped perforations: FlexDiamond 3.1 Clinical background of nasopharyngeal carcinoma 3.1.1 Diagnostic methods 3.1.2 Unmet needs 3.1.3 Summary of prior art 3.2 Specifications and instrumentation 3.2.1 User needs 3.2.2 Design considerations for prototype specifications 3.2.2.1 Anatomical variations and robot shape morphing 3.2.2.2 Anatomical variations in terms of size 3.2.2.3 Anatomical variations based on age and gender 3.2.2.4 Estimation of the distance between a nasal inlet to the nasopharynx 3.2.3 Approach 3.2.4 Function of the prototype 3.3 Prototype description 3.3.1 Expected technical advantages 3.3.2 Overall design 3.3.3 Design components and design rationale 3.3.3.1 Mechanical zooming segment 3.3.3.2 Bending segment 3.3.3.3 Materials selection 3.3.4 Key performance targets 3.3.5 Future prototype classification and comparisons 3.4 Design verification 3.4.1 Mechanical strength tests 3.4.1.1 Tensile test for nylon thread (tendon) 3.4.1.2 Tensile test for polyurethane and TangoBlack-VeroClear composite material 3.4.1.3 Three-point bending test for diamond-cut design (static) 3.4.2 Functionality test 3.4.2.1 Bending capability test 3.4.2.2 The functionality of the mechanical zooming segment 3.4.3 Workspace visualization 3.4.4 Finite element analysis 3.4.5 Biocompatibility test 3.4.6 Detailed summary of design verification tests and the associated acceptance criteria 3.5 Design specifications, review, and benchmarking 3.5.1 Clinical needs 3.5.2 Metrics 3.5.3 Needs-metrics matrix 3.5.4 Metrics benchmarking 3.5.5 Satisfaction benchmarking 3.5.6 Target specification 3.5.7 Present endoscopes and SWOT analysis 3.5.8 Comparative advantages 3.5.9 Failure mode analysis 3.5.10 Other potential design conceptualization variations 3.6 Patent analysis 3.6.1 Expected FlexDiamond prototype: embodiments and envisioned claims 3.6.2 Search strategy 3.6.3 Analysis 3.7 Conclusion Acknowledgment References 4 Flexible steerable manipulator utilizing complementary configuration of multiple routing grooves and ball joints for stab... 4.1 Introduction 4.2 Methods 4.2.1 Proximal control system 4.2.2 Extended broader concepts 4.3 Design verification 4.3.1 Biopsy sample volume 4.3.2 Stability measurement 4.3.3 Bending angle measurement 4.3.4 Actuation time 4.3.5 Design and intended use 4.3.5.1 Easy manipulation around corners 4.3.5.2 Stability of the prototype (tip, forceps) 4.3.5.3 Strength of jaw (pull out) 4.3.5.4 Strength of the distal tip 4.3.5.5 Strength of forceps 4.3.5.6 Accuracy of prototype 4.3.5.7 Total bending angle and individual bending segment 4.3.6 Metrics benchmarking 4.4 Patentability analysis 4.4.1 R1: search by keywords 4.4.2 Relevant patents for analysis 4.5 Conclusion and future developments References 5 Modular origami joint operator to create bendable motions with multiple radii 5.1 Introduction 5.1.1 Overview of tracheostomy 5.1.2 Unmet needs 5.1.2.1 Complications of percutaneous tracheostomy 5.1.2.2 Current measures 5.1.3 Transoral endoscopes 5.1.4 Summary of prior art in endoscopic manipulators 5.2 Design and prototyping 5.2.1 Vacuum-actuated prototypes 5.2.1.1 Pneumatic casing 5.2.2 Tendon-actuated prototypes 5.2.3 Hinge design 5.2.4 Description of prototype 5.2.4.1 Summary of the device 5.2.4.2 Preferred embodiments 5.2.4.3 Modifications of the preferred embodiments 5.3 Design rationale and specifications 5.3.1 Key performance targets 5.3.2 Needs–metrics mapping matrix 5.3.2.1 Table of user needs 5.3.2.2 Metrics table 5.3.2.3 Needs–metrics matrix 5.3.2.4 Metrics benchmarking 5.3.2.5 Satisfaction benchmarking 5.3.2.6 Target specification 5.4 Design verification and validation 5.4.1 Setup 5.4.2 Device verification 5.4.2.1 Pneumatics 5.4.2.1.1 Bending motion Effect of voltage on pressure Effect of pressure on bending angle 5.4.2.1.2 Stability Effect of loading on pressure Effect of disturbance force on lateral displacement 5.4.2.2 Tendon approach 5.4.2.2.1 Effect of pulling/loading on bending angle 5.4.2.2.2 Stability Effect of disturbance force on lateral displacement Effect of disturbance force on longitudinal displacement Dynamic stability in lateral direction Dynamic stability in longitudinal direction 5.4.2.2.3 Functionality of force generation and positioning accuracy Effect of pulling on generating tip force Targeting accuracy Improvement 5.4.3 Device validation 5.4.3.1 Repeatability 5.4.3.2 Absolute deviation 5.4.4 Design review 5.4.4.1 Review results 5.4.4.2 Feasibility 5.5 Further patents benchmarking and remarks 5.5.1 Search strategy 5.5.2 Relevant patents for analysis 5.5.3 Modular origami joint operator claims 5.5.4 Remarks 5.6 Conclusion remarks and future work Acknowledgment References 6 Handheld flexible robot with concentric tubes aiming for intraocular procedures 6.1 Introduction 6.1.1 Intraocular surgery 6.1.1.1 Light pipes 6.1.1.2 Chandelier lighting 6.1.1.3 Infusion cannula 6.1.1.4 Vitrector 6.1.2 Robotic ocular surgery 6.2 Concentric tube robots 6.2.1 Manually actuated 6.2.2 Motor actuated 6.2.3 Design considerations 6.2.3.1 Concentric tube stiffness 6.2.4 Challenges in intraocular concentric tube robot design 6.2.4.1 Dimensions of current concentric tube robots 6.2.4.2 Tube specifications 6.2.4.3 Portability 6.3 Intraocular concentric tube robot prototype design 6.3.1 Workspace requirements 6.3.2 Tubes 6.3.3 Materials of tubes and parts 6.3.4 Tube motion driving system 6.3.5 Casing 6.4 Kinematics and motion control interface 6.5 Evaluation of prototype 6.6 Conclusion References 7 Tendon routing and anchoring for cable-driven single-port surgical manipulators with spring backbones and luminal constraints 7.1 Introduction 7.2 Explored concepts for actuation 7.2.1 Cable-driven actuation 7.2.2 Pneumatic/fluidic actuators 7.2.3 Smart material actuation 7.2.4 Design considerations and evaluating actuation methods 7.3 Constructing the flexible backbone 7.3.1 Tendon-driven spring backbones and tendon fixation 7.3.2 Anchors to guide the tendons 7.3.2.1 Lashing technique 7.3.2.2 Guiding technique 7.3.2.3 Routing technique 7.3.2.4 Hollow tube guides 7.3.2.5 Aluminum sheet guides 7.4 Integration with surgical tools 7.4.1 Forceps 7.4.2 Electrocautery 7.5 Prototype architecture and testing 7.5.1 Overall architecture 7.5.2 Implementing the master-slave teleoperation 7.5.2.1 Master control system 7.5.2.2 Motors and control electronics 7.5.3 Prototype testing 7.6 Attempts at variable stiffness mechanisms 7.6.1 Design thinking framework 7.6.2 Thermal phase-change materials: wax 7.6.3 Layer jamming mechanism 7.6.4 Remarks 7.7 Conclusion Acknowledgments References 8 Compliant bending tubular mechanisms with variable groove patterns for flexible robotic drilling delivery 8.1 Introduction 8.1.1 Background 8.1.2 Objective 8.2 Literature review 8.2.1 Robotic system 8.2.2 Joint types for bending 8.2.3 Related works of manipulators 8.2.3.1 Snake-like slave-side robots 8.2.3.2 Telescoping precurved superelastic tubes 8.3 Bending tube mechanism with groove cutting designs 8.3.1 Bending tube design 8.3.2 Simulations 8.3.2.1 Nitinol tube cutting fishbone-like design 1 8.3.2.2 Simulation result using maximum yield strength 8.3.2.3 Simulation result using minimum yield strength 8.3.3 Preliminary experiments 8.4 Bending tube mechanism with modular sections 8.4.1 Goldfinger retractor inspiration 8.4.2 Prototyping 8.4.2.1 Driven platform 8.4.2.2 Manipulator and flexible drill 8.4.3 Experiment 8.4.3.1 Silicone rubber 8.4.3.2 Pig’s ear 8.4.3.3 Problems faced during the experiment 8.5 Other trials and errors 8.5.1 Compression and tension springs 8.5.2 Polyimide medical tubing 8.5.3 Three-dimensional printed prototype using Ninja Flex 8.6 Conclusion Acknowledgment References Further reading 9 Tendon-driven linkage for steerable guide of flexible bending manipulation 9.1 Introduction 9.2 Mechanical design of the flexible robot 9.3 Experimental procedure and results 9.3.1 Experimental setup 9.3.2 Experimental procedure 9.3.3 Experimental results 9.3.4 Discussion 9.3.4.1 Bendable drill guide 9.3.4.2 Possible force feedback for considerations 9.4 Conclusions and future work Acknowledgment References 10 Soft-bodied flexible bending mechanism with silent shape memory alloys aiming for robotic endoscopy 10.1 Introduction 10.2 Materials and methods 10.2.1 Shape memory alloy 10.2.2 Design of the tentacle 10.2.3 Silicone elastomer 10.2.4 Fabrication of the tentacle 10.2.5 Control setup 10.3 Results 10.3.1 Bending performance of the tentacle 10.4 Discussions 10.4.1 Comparison of the tentacle with the products in the market 10.5 Conclusion 10.5.1 Future works References 11 Comparative mechanical analysis for flexible bending manipulators with quad-tendon antagonistic pairs 11.1 Introduction 11.2 Related work 11.3 Overview of the mechanism of paired tendon-driven manipulator 11.3.1 General design and kinematic model 11.3.2 Overview of different designs 11.3.2.1 One-piece design 11.3.2.2 Disk-tube design 11.3.2.3 Disk-wire design 11.4 Simulation of different designs using the finite element method 11.4.1 Problem geometry 11.4.2 Load cases 11.4.3 Mesh 11.5 Analysis of difference among different designs 11.5.1 Force–deformation analysis 11.5.2 Deformation-shear stress analysis 11.5.3 Different number of disks in disk-wire design analysis 11.5.4 The position of guiding hole in disk-wire design 11.6 Prototype and experiment 11.7 Conclusion and recommendation for the future study References 12 Flexible robotic platform with multiple-bending tendon-driven mechanism 12.1 Introduction 12.2 Design principles and qualifications 12.2.1 Modular design approach 12.2.1.1 Flexible manipulator module 12.2.1.2 Motor unit module 12.2.1.3 Electronics module 12.2.2 Design qualification 12.2.2.1 Bending angle determination 12.2.2.2 Pulling length and velocity of stepper motors 12.2.2.3 Denavit–Hartenberg transformation matrix 12.3 Prototype fabrication 12.3.1 Flexible manipulator module 12.3.2 Motor unit module 12.3.3 Electronics module 12.4 Prototype analysis and characteristic study 12.4.1 Flexible manipulator prototype workspace 12.4.2 Flexible manipulator prototype repeatability 12.4.3 Weight-bearing test 12.4.4 Obstacles avoidance test 12.4.5 Practical application via cadaveric testing 12.5 Discussion 12.5.1 Comparison with existing flexible manipulator platforms 12.5.2 Biocompatible materials 12.5.3 Precision positioning 12.5.4 Robust testing for further development 12.6 Conclusion Acknowledgment References 13 Design evolution of a flexible robotic bending end-effector for transluminal explorations 13.1 Introduction 13.2 Prior art and design criteria 13.3 Prototype overall assembly and architecture 13.3.1 Design process 13.3.2 Final prototype design 13.4 Design components and rationale 13.4.1 Camera holder 13.4.2 Main conduit 13.4.3 Connector 13.4.4 Material selection 13.5 Motion specifications and transmission instrumentation 13.5.1 Rotational motion to tip bending 13.5.2 Translational motion 13.5.3 Electronic components 13.5.4 Joystick control 13.5.5 Other prototype factors 13.6 Design verification 13.6.1 Design parameter verification 13.6.2 Mechanical analysis of design 13.7 Design review, specification, and benchmarking 13.7.1 Main difference in the structure of endoscope components 13.7.2 Competitive advantages 13.7.3 Design failure mode and effect analysis 13.8 Conclusion References Further reading 14 Force sensing in compact concentric tube mechanism with optical fibers 14.1 Introduction 14.2 Literature review 14.2.1 Review of concentric tube robot design 14.2.1.1 Actuation of concentric tube robots 14.2.1.2 Tube design considerations 14.2.2 Fiber Bragg gratings for tactile feedback 14.2.2.1 Working principle 14.3 Concentric tube robot design 14.3.1 Tube configuration 14.3.2 Tube driving system 14.3.3 DC motor gear assembly 14.4 Kinematic model 14.5 Control system 14.5.1 Motor driver 14.5.2 Proportional–integral–derivative tuning 14.6 Force sensing tip 14.7 Experiment 14.8 Conclusion and future work Acknowledgment References 15 Electromechanical characterization of magnetic responsive and conductive soft polymer actuators 15.1 Introduction 15.2 Experimental setup 15.2.1 Preparation of PEDOT:PSS/xylitol/Fe3O4 composite films and coated cotton thread 15.2.2 Preparation of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator 15.2.3 Characterization of PEDOT:PSS/xylitol/Fe3O4 composite films 15.2.4 Characterization of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator 15.3 Results and discussion 15.3.1 Electrical properties of PEDOT:PSS/xylitol/Fe3O4 films 15.3.2 Mechanical properties of PEDOT:PSS/xylitol/Fe3O4 films 15.3.3 Magnetic properties of PEDOT:PSS/xylitol/Fe3O4 films 15.3.4 PEDOT:PSS/xylitol/Fe3O4-coated cotton thread 15.3.5 Electrical properties of IL/PVDF-HFP/PEDOT:PSS/xylitol 15.3.6 Mechanical properties of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator 15.4 Conclusion References 16 Robotic transluminal Pan-and-Tilt Scope 16.1 Introduction 16.1.1 Unmet needs 16.1.2 Approaches addressing the needs 16.2 Device design 16.2.1 Design requirement and aims 16.2.2 Design overview 16.2.3 Orientation actuation components and rationale 16.2.3.1 Tilting mechanism 16.2.3.2 Rotation mechanism 16.3 Design verification 16.3.1 Deflection 16.3.2 Viewing angles 16.4 Benchmarking with needs-metrics matrix 16.4.1 Needs table 16.4.2 Metrics table 16.4.3 Needs-metrics matrix 16.4.4 Metrics benchmarking 16.4.5 Satisfaction benchmarking 16.4.6 Target specification 16.5 Detailed analysis of relevant patents 16.5.1 US 20140275785 A1 apparatus for wiping angled window of the endoscope 16.5.2 US 7713189 B2 video endoscope with a rotatable video camera 16.5.2.1 Key claims 16.5.2.2 Assessment 16.5.3 US6464631 B1 endoscope with pannable camera 16.5.3.1 Key claims 16.5.3.2 Assessment 16.5.4 US20140012080 A1 endoscopic camera and the endoscopic device 16.5.4.1 Key claims 16.5.4.2 Assessment 16.5.5 US 20140249369 A1 imaging apparatus and the rigid endoscope 16.5.5.1 Key claims 16.5.5.2 Assessment 16.5.6 US 20130060087 A1 rigid scope apparatus 16.5.6.1 Key claims 16.5.6.2 Assessment 16.6 Design review 16.6.1 The envisioned device indication of use 16.6.2 The envisioned procedure of using Pan-and-Tilt Scope 16.6.3 Failure mode analysis 16.7 Conclusion and future developments Acknowledgment References 17 Single-port multichannel multi-degree-of-freedom robot with variable stiffness for natural orifice transluminal endoscop... 17.1 Introduction 17.2 Robotic endoscopy system 17.2.1 Clinical requirements 17.2.2 System overview 17.2.3 The compliant arm with variable stiffness 17.2.4 The flexible wrist joint 17.2.5 The forceps 17.2.6 The actuator 17.2.7 Surgery procedure 17.3 Experiment and results 17.4 Conclusion and discussion Acknowledgment References 18 EndoGoose: a flexible and steerable endoscopic forceps with actively pose-retaining bendable sections 18.1 Introduction 18.2 Methods 18.2.1 Overall design 18.2.2 Actively bendable and shape-retaining section 18.2.3 Control box 18.3 Design parameter verification 18.3.1 Design review of satisfying design acceptance criteria 18.3.2 Design failure mode and effect analysis 18.4 Analysis of needs and metrics 18.4.1 Design metrics 18.4.2 Metrics and satisfaction benchmarking 18.4.3 Target specifications 18.5 Conclusion Acknowledgment References 19 Flexible drill manipulator utilizing different rolling sliding joints for transoral drilling through the tracheal tissue 19.1 Clinical needs 19.1.1 Laryngeal cancer 19.1.2 Bronchopulmonary dysplasia 19.2 Limitations of the current devices 19.2.1 Percutaneous tracheostomy 19.2.2 Current instruments 19.2.2.1 Blue Rhino dilator 19.3 Goldrill device: flexible endotracheal drill 19.3.1 Drilling needle 19.3.2 Handle part 19.3.3 Bending segment 19.3.4 Cut design selection in terms of interface sliding and detachment 19.3.5 Wire placement and cross-sectional shape selection 19.3.6 Tip designs 19.4 Needs matrix and technical advantages 19.4.1 Flexible manipulation within the trachea 19.4.2 Stability of drilling tip 19.4.3 Drilling force on the trachea 19.4.4 Stability of the bending segment 19.4.5 Strength of tendon wires 19.5 Evolution of prototype versions 19.6 Design verification tests 19.6.1 INSTRON tests 19.6.1.1 The tensile stress of tendon wires 19.6.1.2 Cyclic deformation of tendon wires 19.6.1.3 Compression tests of polylactic acid material 19.6.2 Force and vibration tests with OptoForce 19.6.2.1 Segment bending 19.6.2.2 Drill tip force 19.6.2.3 Drill tip vibration 19.6.3 Animal cartilage 19.6.4 Comparison with gold finger 19.7 Future developments 19.8 Supplementary summary Acknowledgment References 20 Thermo-responsive hydrogel-based circular valve embedded with shape-memory actuators 20.1 Introduction 20.2 Materials and methods 20.2.1 Thermo-responsive hydrogel valve 20.2.1.1 Three-dimensional printed mold 20.2.1.2 Hydrogel 20.2.1.3 Fabrication 20.2.2 Shape memory alloy–actuated hydrogel valve 20.2.2.1 Three-dimensional printed mold 20.2.2.2 Hydrogel 20.2.2.3 Shape memory alloy 20.2.2.4 Fabrication 20.3 Results 20.3.1 Performance of the thermo-responsive hydrogel valve 20.3.2 Performance of the shape memory alloy–actuated hydrogel valve 20.3.2.1 Shape memory alloy wire-based shape memory alloy–actuated hydrogel valve 20.3.2.2 Shape memory alloy spring-based shape memory alloy–actuated hydrogel valve 20.4 Discussion 20.5 Conclusion and future work References 21 OmniFlex: omnidirectional flexible hand-held endoscopic manipulator with spheroidal joint 21.1 Introduction 21.1.1 Nasopharyngeal carcinoma: origin and anatomy 21.1.2 Clinical significance 21.1.3 Endoscopic manipulators 21.1.4 The objective of the present study 21.2 System design and fabrication 21.3 Key features 21.4 Benchmarking 21.5 Design verification tests 21.5.1 Precision test 21.5.2 Bend test 21.5.3 Angle of curvature test 21.5.4 Biopsy test 21.6 Conclusion References Index