ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems

دانلود کتاب دستگاه های نانو ژنراتور تریبوالکتریک انعطاف پذیر و قابل کشش: به سمت سیستم های خود تغذیه

Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems

مشخصات کتاب

Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783527345724, 9783527820160 
ناشر: Wiley 
سال نشر: 2019 
تعداد صفحات: 427 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Flexible and Stretchable Triboelectric Nanogenerator Devices: Toward Self-Powered Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دستگاه های نانو ژنراتور تریبوالکتریک انعطاف پذیر و قابل کشش: به سمت سیستم های خود تغذیه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب دستگاه های نانو ژنراتور تریبوالکتریک انعطاف پذیر و قابل کشش: به سمت سیستم های خود تغذیه

این کتاب با مبانی نانو ژنراتورهای تریبوالکتریک (TENG) شروع می‌شود و تا فناوری‌های ساخت برای دستیابی به انعطاف‌پذیری و کشش ادامه می‌یابد. سپس میکروسیستم‌های انعطاف‌پذیر خود تغذیه معرفی می‌شوند و نمونه‌های کاربردی ارائه می‌شوند، از جمله سنسورهای فعال مبتنی بر TENG، محرک‌های TENG، هوش مصنوعی و سیستم‌های یکپارچه.


توضیحاتی درمورد کتاب به خارجی

The book starts with the fundamentals of triboelectric nanogenerators (TENGs), and continues through to fabrication technologies to achieve flexible and stretchable. Then self-powered flexible microsystems are introduced and application examples are presented, including TENG-based active sensors, TENG-powered actuators, artificial intelligence and integrated systems.



فهرست مطالب

Content: Preface xvPart I Fundamentals of Triboelectric Nanogenerator 11 Overview of Triboelectric Nanogenerators 3Xiaosheng Zhang1.1 Energy Crisis of Microsystems 31.2 Microenergy Technologies 51.2.1 Photovoltaic Effect 71.2.2 Thermoelectric Effect 71.2.3 Electromagnetic Effect 81.2.4 Piezoelectric Effect 81.3 Triboelectric Nanogenerators 91.3.1 Principle of Triboelectric Nanogenerators 91.3.2 Key Factor: Triboelectric Series 111.3.3 Material Progress of Triboelectric Nanogenerators 111.3.4 Challenges of Triboelectric Nanogenerators 141.4 Summary 14Abbreviations 15References 152 Structures of Triboelectric Nanogenerators 19Haixia Zhang2.1 Operation Mechanisms of TENGs 192.1.1 Contact-Separation (CS) Mode 212.1.2 Relative-Sliding (RS) Mode 212.1.3 Single-Electrode (SE) Mode 222.1.4 Freestanding (FS) Mode 222.2 Typical Structures of TENGs 242.2.1 Plane-Shaped TENGs 242.2.2 Arch-Shaped TENGs 262.2.3 Zig-Zag-Shaped TENGs 302.2.4 Wavy-Shaped TENGs 332.2.5 Tank-Shaped TENGs 332.2.6 Rotor-Shaped TENGs 332.3 Summary 37Abbreviations 37References 383 Fabrication of Triboelectric Nanogenerators 41Bo Meng3.1 Mass Fabrication Technologies for Triboelectric Nanogenerators 413.1.1 Soft Lithography 413.1.2 Flexible Printed Circuit Manufacture 443.1.3 Roll-to-Roll Manufacture 453.1.4 3D Printing 463.1.5 Textile Manufacture 493.2 Performance Enhancement for Triboelectric Nanogenerators 503.2.1 Plasma Treatment 513.2.2 Wrinkle-Structured Surface 513.2.3 Chemical Synthesis 533.3 Summary 54Abbreviations 55References 554 Characterization of Triboelectric Nanogenerators 59Yu Song4.1 Electrical Operating Cycles of Triboelectric Nanogenerators 604.1.1 V-Q Plot and Its Characteristics 604.1.2 Operating Cycles of Energy Output 614.1.3 Measurements of Operating Cycles 644.2 Standard and Figure of Merits for Quantifying Triboelectric Nanogenerators 664.2.1 Figure of Merits of Triboelectric Nanogenerators 664.2.2 Structural Figure of Merits of Triboelectric Nanogenerators 674.2.3 Material Figure of Merit for Triboelectric Nanogenerators 704.3 Summary 73Abbreviations 74References 745 Power Management of Triboelectric Nanogenerators 77Xiaoliang Cheng5.1 Theoretical Analysis of Power Transmittance of TENGs 775.1.1 Resistive Load Characteristics of TENGs 785.1.2 Capacitive Load Characteristics of TENGs 785.2 The Progress in TENG Power Management 815.2.1 Using Inductive Transformers 815.2.2 Using Capacitive Transformers 825.2.3 Using LC Oscillation Circuit 835.3 Summary 90Abbreviations 90References 91Part II Approaches to Flexible and Stretchable Device 956 Overview of Flexible and Stretchable Approaches 97Mengdi Han6.1 Intrinsically Flexible or Stretchable Materials 976.1.1 Nanomaterials in Different Dimensions 976.1.2 Organic Materials 1006.1.3 Other Materials 1026.2 Structural Designs for Flexible and Stretchable Electronics 1036.2.1 Structural Design for Flexible Electronics 1036.2.2 2D Structural Design for Stretchable Electronics 1056.2.3 3D Structural Design for Stretchable Electronics 1076.3 Summary 107Abbreviations 107References 1087 Flexible and Stretchable Devices from 0D Nanomaterials 113Zongming Su7.1 0D Nanomaterials 1147.1.1 Quantum Dots 1147.1.2 Carbon Quantum Dots 1157.1.3 Gold Nanoparticles 1167.2 Thin Films Using 0D Nanomaterials 1177.2.1 Casting 1177.2.2 Dip Coating 1187.2.3 Langmuir-Blodgett Deposition 1207.3 Patterning Methods and Applications 1217.3.1 Screen Printing 1217.3.2 Inkjet Printing 1217.3.3 Microcontact Printing 1227.4 Applications of 0D Nanomaterials 1237.4.1 Electrodes 1247.4.2 Light-Emitting Diodes 1257.4.3 Transistors 1257.5 Summary 128Abbreviations 128References 1298 Flexible and Stretchable Devices from 1D Nanomaterials 133Liming Miao8.1 Carbon Nanotubes 1338.1.1 Fabrication Methods for CNTs 1338.1.1.1 CNT-Based Bulk Materials 1348.1.1.2 CNT-Based Surface Materials 1348.1.2 Application of CNTs 1368.2 ZnO Nanowires 1388.2.1 Synthesis of ZnO Nanowires 1398.2.2 Applications of ZnO Nanowires 1418.3 Ag Nanowires 1428.3.1 Fabrication Methods for Ag Nanowires 1428.3.2 Applications of Ag Nanowires 1438.4 Summary 145Abbreviations 145References 1469 Flexible and Stretchable Devices from 2D Nanomaterials 149Jinxin Zhang9.1 2D Nanomaterials 1499.1.1 Graphene 1509.1.2 TMDs 1519.1.3 Boron Nitride 1519.2 Synthesis of Graphene 1529.2.1 Micromechanical Exfoliation 1529.2.2 Epitaxial Growth 1539.2.3 Chemical Exfoliation 1539.3 Graphene Transfer 1549.3.1 Mechanical Exfoliation 1549.3.2 Polymer-Assisted Transfer 1549.3.3 Roll-to-Roll Transfer 1569.3.4 "Transfer-Free" Method 1569.4 Applications of Graphene 1579.4.1 Flexible and Stretchable Transparent Electrodes 1579.4.2 Nanogenerators 1589.5 Summary 160Abbreviations 161References 16110 Flexible and Stretchable Devices from Unconventional 3D Structural Design 165Hangbo Zhao and Mengdi Han10.1 Stretchable 3D Ribbon and Membrane Structures Formed by Basic Buckling 16510.1.1 3D Nanoribbons 16610.1.2 3D Nanomembranes 16710.1.3 3D Bridge-Island Structures 16710.2 Deterministic 3D Assembly 16710.2.1 Basic Approach of Deterministic 3D Assembly 16910.2.2 3D Kirigami Structure in Micro-/Nanomembranes 17210.2.3 Buckling Control Assisted by Stress and Strain Engineering 17210.2.4 Multilayer 3D Structures 17310.2.5 Freestanding 3D Structures 17510.2.6 Morphable 3D Structures by Multistable Buckling Mechanics 17610.3 Flexible and Stretchable Devices from 3D Assembly 17710.3.1 Electronic Devices and Systems 17710.3.2 Optical and Optoelectronic Devices 17710.3.3 Scaffolds as Interfaces with Biological Systems 17810.4 Summary 180Abbreviations 181References 18111 Flexible and Stretchable Devices from Other Materials 183Haotian Chen11.1 Polymer-Based Conductive Materials 18311.1.1 PANI 18411.1.2 PPy 18511.1.3 PEDOT : PSS 18511.1.4 Organic Nanowires 18511.2 Composite-Based Conductive Materials 18911.2.1 Conductive Fillers Blended into Stretchable Elastomers 18911.2.2 Conductive Film Embedded into Stretchable Elastomer 19111.3 Textile-Based Conductive Materials 19511.3.1 Fiber-Based Conductive Materials 19511.3.2 Textile-Based Conductive Materials 19611.4 Summary 199Abbreviations 199References 200Part III Self-Powered Smart System 20312 Active Sensors 205Xuexian Chen12.1 Active Touch Sensors 20512.1.1 Static and Dynamic Pressure Sensor 20612.1.2 Tactile Imaging Sensor 20612.1.3 Single-Electrode Touch Sensor 20712.2 Active Vibration Sensors 21012.2.1 Vibration Sensor for Quantitative Amplitude Measurement 21012.2.2 Vibration Acceleration Sensor 21212.2.3 Vibration Direction Sensor 21312.2.4 Acoustic Sensor 21312.3 Active Motion Sensors 21512.3.1 Linear Displacement Sensor 21512.3.2 Angle Sensor 21712.3.3 Omnidirectional Tilt Sensor 21712.4 Active Chemical/Environmental Sensors 21912.4.1 Chemical Sensor 21912.4.2 UV Sensor 22112.5 Summary 222Abbreviations 222References 22313 Hybrid Sensing Technology 227Xiaosheng Zhang, Yanyuan Ba, and Mengdi Han13.1 Dual Hybrid Power Technology 22713.1.1 Triboelectric-Piezoelectric Nanogenerator 22813.1.2 Triboelectric-Photovoltaic Nanogenerator 23113.1.3 Triboelectric-Electromagnetic Nanogenerator 23313.2 Multiple Hybrid Power Technology 23413.2.1 Triple Hybrid Generators 23413.2.2 Four-Mechanism Hybrid Generators 23513.3 Hybrid Sensors and Applications 23813.3.1 Piezoelectric-Triboelectric Hybrid Sensors 23913.3.2 Electromagnetic-Triboelectric Hybrid Sensors 24213.3.3 Multiple Hybrid Sensors 24713.4 Summary 249Abbreviations 250References 25114 Smart Actuators 253Xiaosheng Zhang and Zhaohui Wu14.1 Actuators in Optics 25414.1.1 Laser Controller 25414.1.2 Tunable Optical Membranes 25814.2 Actuators in Biomedicine 26114.2.1 Bladder Illness Curation 26114.2.2 Drug Delivery 26414.3 Actuators in Industrial Application 26714.3.1 Electrospinning System 26814.3.2 Syringe Printing 27014.4 Actuators in Microfluidic Manipulation 27214.4.1 Droplet Motion Drive 27214.4.2 Microfluidic Transport 27414.5 Summary 276Abbreviations 276References 27715 Flexible and Stretchable Electronic Skin 281Mayue Shi and Hanxiang Wu15.1 Design of Electronic Skin 28115.2 Electronic Skin for Mechanical Sensing 28515.2.1 Pressure Sensing 28515.2.2 Sliding Sensing 28815.2.3 Bending Sensing 28815.2.4 Location Sensing 28915.2.5 Strain Sensing 29015.3 Electronic Skin for Physiological Sensing 29415.3.1 Multimodal Sensing 29415.3.2 Physiological Monitoring 29615.3.3 Signal Transmission 29815.3.4 Reliability 29815.4 Summary 301Abbreviations 301References 302Part IV Applications of Flexible and Stretchable Self-Powered Smart System 30516 All-in-One Self-Powered Microsystems 307Xiaosheng Zhang and Danliang Wen16.1 All-in-One Energy Harvester 30816.1.1 One-Structural Triple-mechanism Energy Harvester 30916.1.2 One-Structural Flexible Energy Harvester 31016.1.3 One-Structural Multi-mechanism Energy Harvester 31216.2 All-in-One Power Unit 31616.2.1 Connection of TENGs and Traditional Circuits 31616.2.2 Integration of TENGs and Flexible Supercapacitors 32016.3 All-in-One Self-Powered Microsystems 32616.3.1 All-Fiber-Based Self-Powered Microsystem 32616.3.2 All-in-One Self-charging Smart Bracelet 32616.3.3 Other Research of All-in-One Self-Powered Microsystems 32716.4 Summary 335Abbreviations 335References 33617 Applications in Biomedical Systems 339Cunman Liang and Mengdi Han17.1 Power Sources of Implantable Medical Devices 34017.1.1 Power Source for Pacemakers 34017.1.2 Power Source for Medical Lasers 34217.1.3 Hybrid Power Source for Medical Applications 34417.2 Active Monitoring 34517.2.1 Nanogenerators for Cardiac Monitoring 34517.2.2 Multifunctional Real-Time Monitoring 34717.2.3 Versatile Energy Conversion and Monitoring 35017.2.4 Self-Powered Wireless Body Sensor Network 35217.3 Self-Powered System for Electric Stimulation in Tissue Engineering 35317.3.1 Self-Powered Electrical-Stimulation-Assisted Neural Differentiation System 35317.3.2 Biodegradable TENG for in Vivo Short-Term Stimulation 35417.3.3 Absorbable Bioresorbable in Vivo Natural-Materials-Based TENGs 35517.4 Summary 356Abbreviations 357References 35718 Applications in Internet of Things and Artificial Intelligence 359Mayue Shi and Hanxiang Wu18.1 Applications in Internet of Things 35918.1.1 Internet of Things 35918.1.2 Self-Powered Sensing Nodes 36018.1.3 Wireless Communication 36318.1.4 Power Management Circuit 36418.2 Applications in Artificial Intelligence 36718.2.1 Artificial Intelligence 36718.2.2 Electronic Skin 36818.2.3 Robotic Prosthetics 37118.2.4 Human-Machine Interfaces 37418.3 Summary 376Abbreviations 376References 37719 Applications in Environmental Monitoring/Protection 379Hang Guo and Wei Tang19.1 Self-powered EnvironmentalMonitoring System 37919.1.1 Phenol Detection 38019.1.2 Dopamine Detection 38219.1.3 Heavy Metal Ion Detection 38319.2 Self-powered Environmental Protection 38419.2.1 Degradation of AAB 38419.2.2 Degradation of Methyl Orange (MO) System 38419.2.3 Removing Fly Ash and SO2 38519.2.4 Seawater Desalination (SD) and Electrolysis (SE) System 38619.3 Self-powered Electrochemistry System 38819.3.1 Water Electrolysis Units 38819.3.2 Electrochemical Polymerization System 38919.3.3 Electrochemical Reduction System 39019.4 Self-powered Anticorrosion 39119.4.1 Driven by Mechanical Energy 39219.4.2 Driven by Wave Energy 39319.5 Summary 394Abbreviations 394References 395Index 399




نظرات کاربران