دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Roderick Nigel Finn. B.G. Kapoor
سری:
ISBN (شابک) : 1578083885, 9781578083886
ناشر: Science Publishers
سال نشر: 2008
تعداد صفحات: 741
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 44 مگابایت
در صورت تبدیل فایل کتاب Fish Larval Physiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیولوژی لاروال ماهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به عنوان منبعی برای دانشجویان و محققان علاقه مند به زیست شناسی و فیزیولوژی تکاملی در نظر گرفته شده است و به طور خاص به مراحل لاروی ماهی می پردازد. لارو ماهی (و جنین ماهی) جوان یا بالغ کوچک نیستند. بلکه آنها ارگانیسم های انتقالی هستند که شکاف مهم بین تخم تک سلولی و نوجوان نابالغ جنسی را پر می کنند. لارو ماهی نشان دهنده مرحله ای از چرخه زندگی است که برای تمایز، تغذیه و توزیع استفاده می شود. هدف این کتاب ارائه یک رساله تک جلدی است که چگونگی رشد و تمایز لاروهای ماهی، نحوه تنظیم تعادل نمک، آب و اسید و باز، نحوه انتقال و تبادل گازها، کسب و استفاده از انرژی، نحوه احساس محیط اطراف و در محیط آبی خود حرکت می کنند، چگونه خود را کنترل و دفاع می کنند و در نهایت چگونه بزرگ می شوند.
This book is intended as a resource for students and researchers interested in developmental biology and physiology and specifically addresses the larval stages of fish. Fish larvae (and fish embryos) are not small juveniles or adults. Rather they are transitionary organisms that bridge the critical gap between the singlecelled egg and sexually immature juvenile. Fish larvae represent the stage of the life cycle that is used for differentiation, feeding and distribution. The book aims at providing a single-volume treatise that explains how fish larvae develop and differentiate, how they regulate salt, water and acid-base balance, how they transport and exchange gases, acquire and utilise energy, how they sense their environment, and move in their aquatic medium, how they control and defend themselves, and finally how they grow up.
Preface\r......Page 8
Contents\r......Page 10
List of Contributors\r......Page 12
PART 1—Ontogeny\r......Page 18
INTRODUCTION......Page 20
Cleavage\n......Page 21
The Early Blastula and the Yolk Syncytial Layer\n......Page 22
EPIBOLY AND GASTRULATION......Page 23
Mesodermal and Endodermal Specification\n......Page 24
Convergent-extension and the Fish \"Organiser\"\n......Page 25
Organogenesis in the Mesoderm\n......Page 26
Organogenesis in the Ectoderm\n......Page 30
HOX GENES, SEGMENTAL PATTERNING AND THE EVOLUTION OF AXIAL COMPLEXITY\n......Page 33
FUTURE PERSPECTIVES......Page 35
References......Page 36
INTRODUCTION\n......Page 44
GENETIC AND GENOMIC RESOURCES FOR STUDYING FISH PIGMENTATION\n......Page 46
ORIGIN OF CHROMATOPHORES FROM THE NEURAL CREST\n......Page 50
Specification of Chromatophore Lineages\n......Page 51
Mechanisms of Embryonic/Early Larval Pigment Pattern Development\n......Page 53
ADULT PIGMENT PATTERN FORMATION\n......Page 55
Genetic Requirements of Adult Chromatophore Development\n......Page 56
Cellular and Physiological Mechanisms of Adult Pigment Pattern Development and Homeostasis\n......Page 57
FUTURE PERSPECTIVES\n......Page 59
References......Page 60
INTRODUCTION\n......Page 68
PHYSIOLOGICAL BASIS FOR LIGHT PRODUCTION\n......Page 69
Order Saccopharyngiformes......Page 74
Order Argentiniformes......Page 76
Suborder Alepocephaloidei......Page 78
Order Stomiiformes......Page 80
Order Auopiformes......Page 81
Order Myctophiformes......Page 83
Order Gadiformes\n......Page 86
Order Lophiiformes\n......Page 88
Order Beryciformes\n......Page 89
Order Perciformes\n......Page 91
FUNCTIONAL SIGNIFICANCE OF BIOLUMINESCENCE IN LARVAL FISHES\n......Page 93
FUTURE PERSPECTIVES\n......Page 96
\nReferences......Page 98
PART 2—Respiration Homeostasis\r......Page 106
INTRODUCTION\n......Page 108
THE PRINCIPLES OF GAS EXCHANGE\n......Page 109
Egg Size and Egg Position in a Clutch\n......Page 110
The Chorion as a Diffusion Barrier\n......Page 111
Unstirred Layers\n......Page 113
THE SITE OF GAS EXCHANGE\n......Page 115
OXYGEN UPTAKE\n......Page 120
The Influence of Hypoxia\n......Page 122
Hypoxia and Ventilation\n......Page 124
Hypoxia and Haemoglobin Function\n......Page 125
TEMPERATURE EFFECTS\n......Page 126
FUTURE PERSPECTIVES\n......Page 127
References......Page 128
Environmental Challenges to Survival\n......Page 136
Anatomical/Physiological Challenges to Survival\n......Page 137
The Changing Role of the Circulation during the Embryonic to Larval Transition\n......Page 138
Heart Formation\n......Page 139
Conduction System of the Heart\n......Page 141
Vasculogenesis and Angiogenesis\n......Page 144
Vascular Structure and Patterns\n......Page 145
Ontogeny of Haematopoiesis\n......Page 147
Ontogeny of Haemoglobin and Respiratory Gas Transport\n......Page 148
Metronomic phase of larval heart/Cardiovascular function\n......Page 149
Regulated phase of larval heart function\n......Page 150
Peripheral Vascular Regulation......Page 155
Heart rate\n......Page 156
Stroke volume and cardiac output\n......Page 157
Water current [acute and chronic swim training!\n......Page 158
Hypoxia\n......Page 160
Diversity in Branchial Structure\n......Page 161
Diversity in Respiration-Circulatory Support for Air Breathing......Page 162
MEASURING CARDIOVASCULAR DEVELOPMENT IN LARVAL FISHES......Page 165
FUTURE PERSPECTIVES......Page 167
References......Page 169
INTRODUCTION\n......Page 180
Development of Osmoregulatory Organs during Early Life Stages of Teleosts\n......Page 181
Osmoregulatory Ability of Teleost Embryos\n......Page 182
Extrabranchial Chloride Cells in Embryos and Larvae\n......Page 183
Detection of Chloride Cells\n......Page 184
Freshwater- and Seawater-type Chloride Cells\n......Page 185
Functional Differentiation of Chloride Cells\n......Page 187
Functional Classification of Chloride Cells\n......Page 188
\"YOLK BALL\" INCUBATION SYSTEM\n......Page 193
POSSIBLE OSMORECEPTION BY CHLORIDE CELLS\n......Page 195
FUTURE PERSPECTIVES\n......Page 196
References......Page 197
INTRODUCTION\n......Page 202
Whole Animal Acid-base Regulation\n......Page 203
Cellular Processes and Transporters Associated with Acid-base Regulation\n......Page 205
Whole Animal Acid-base Regulation Shortly Following Fertilisation\n......Page 206
Whole Animal Acid-base Regulation Following Hatch\n......Page 207
Cellular Processes and Transporters Associated with Acid-base Regulation\n......Page 209
ACID-BASE REGULATION IN RELATION TO THE ENVIRONMENT IN EARLY LIFE STAGES\n......Page 210
FUTURE PERSPECTIVES\n......Page 211
References......Page 212
PART 3—Nutrition and Energy......Page 216
INTRODUCTION\n......Page 218
Intestine\n......Page 219
Stomach\n......Page 224
Midgut\n......Page 227
Hindgut/rectum\n......Page 228
Liver\n......Page 229
Prey Density, Food Intake, Gut Transit Time and Digestive Efficiency\n......Page 230
Effect of Prey Type\n......Page 232
Effect of Dietary Nutrient Composition\n......Page 236
Processes and mechanisms......Page 238
Changes in proteolytic activity during larval development\n......Page 240
Larval proteolytic capacity\n......Page 241
Processes and mechanisms\n......Page 243
Lipolytic capacity during larval development\n......Page 248
Lipolytic efficiency\n......Page 249
Processes and mechanisms\n......Page 253
Effect of the degree of protein hydrolysis on absorption rates\n......Page 255
Processes and mechanisms......Page 257
Efficiency\n......Page 261
FUTURE PERSPECTIVES......Page 265
References......Page 266
Generation of Nitrogenous End-products\n......Page 280
Constraints on Nitrogen Excretion\n......Page 281
Properties and Toxicity of Ammonia\n......Page 282
Partitioning between Nitrogenous End-products\n......Page 283
METABOLIC ORIGINS OF EXCRETED NITROGEN\n......Page 284
Transfer and deamination of amino groups......Page 285
Nucleotide metabolism......Page 287
Urea synthetic pathways that can detoxify ammonia......Page 288
Pathways for urea synthesis that cannot detoxify ammonia\n......Page 294
Ammonia excretion\n......Page 297
Ammonia accumulation\n......Page 298
Compartments for ammonia accumulation\n......Page 299
Urea excretion mechanisms\n......Page 300
Patterns of urea excretion and accumulation......Page 301
Environmental Ammonia\n......Page 303
Water pH\n......Page 304
Feed Intake and Nutrient Composition......Page 305
FUTURE PERSPECTIVES\n......Page 306
References......Page 307
PART 4—Sensory Physiolosy\r......Page 320
INTRODUCTION\n......Page 322
A Common Mechanosensory Receptor\n......Page 323
The Mechanosensory Lateral Line\n......Page 324
The Inner Ear......Page 326
Embryonic Origins\n......Page 328
Post-embryonic development\n......Page 329
Role in Feeding\n......Page 330
Role in predator evasion\n......Page 331
Role in orientation behaviours\n......Page 333
Post-embryonic development and physiology\n......Page 334
Hearing in the orientation to reefs by settlement-stage reef larvae\n......Page 337
FUTURE PERSPECTIVES\n......Page 340
References......Page 341
INTRODUCTION\n......Page 348
OLFACTION\n......Page 349
Olfactory placode\n......Page 351
Olfactory pit and nostrils\n......Page 352
Olfactory epithelium\n......Page 356
Lamellae and olfactory rosette\n......Page 357
Secondary lamellae\n......Page 359
Accessory sacs\n......Page 360
Pioneer neurones and formation of the olfactory nerve\n......Page 361
Olfactory bulb, tract, and secondary olfactory centres\n......Page 364
Odorant receptors [ORs)\n......Page 365
Chemokinesis\n......Page 367
Alarm chemical signals\n......Page 368
Food chemical signals\n......Page 370
GUSTATION\n......Page 372
Morphology of Gustatory System in Adult\n......Page 374
Embryonic Origin of Taste Buds\n......Page 377
Taste bud formation\n......Page 378
Taste bud appearance in relation to first-feeding\n......Page 381
Taste bud innervation......Page 386
Taste bud spreading\n......Page 388
Barbels\n......Page 390
Ecological adaptations\n......Page 392
Taste preferences\n......Page 393
Thresholds\n......Page 395
SOLITARY CHEMOSENSORY CELLS (SCC)\n......Page 397
FUTURE PERSPECTIVES\n......Page 399
References......Page 400
INTRODUCTION......Page 412
OCULAR AND RETINAL ANATOMY......Page 413
Spectral Sensitivity Changes during the Larval Period\n......Page 414
Winter flounder (Pseudopleuronectes americanus)\n......Page 416
Zebra fish (Danio rerio]\n......Page 417
Salmonids\n......Page 420
Cichlids\n......Page 422
Lingcod (Ophiodon elongatus)......Page 423
STRUCTURAL CHANGES DURING THE LARVAL PERIOD\n......Page 425
Indirect Development\n......Page 426
Intermediate Development\n......Page 430
VISUAL ACUITY\n......Page 431
RETINOMOTOR MOVEMENTS\n......Page 434
FUTURE PERSPECTIVES\n......Page 435
References......Page 436
INTRODUCTION......Page 442
Lampreys (Agnatha)\n......Page 449
Acipenseridae\n......Page 450
Polyodontidae\n......Page 451
Aba (Gymnarchus niloticus, Gymnarchidae)\n......Page 455
Mormyridae\n......Page 456
Siluriformes\n......Page 462
Gymnotiformes\n......Page 464
Glass knife fish (Eigenmannia lineata)......Page 465
Long nosedblack ghost (Apteronotus leptorhynchus)......Page 467
FUTURE PERSPECTIVES......Page 471
References......Page 472
INTRODUCTION......Page 478
EFFECTS OF MAGNETIC FIELD ON EMBRYONIC DEVELOPMENT OF FISH......Page 480
Oocyte Movements\n......Page 481
Movements of the Circulation System in Fish Embryos and Larvae......Page 483
Directional Responses of Fish Embryos......Page 490
Timing of orientation emergence in the embryos and development of the process......Page 492
Directional Responses of Fish Larvae......Page 493
Sea trout larvae prior to resorption of 2/3 of their yolk-sac content......Page 495
Sea trout larvae with 2/3 of their yolk-sac resorbed......Page 496
Electromagnetic induction-based magnetoreception......Page 498
Magnetoreception based on magnetic field-dependent chemical reactions......Page 499
Magnetoreception based on single-domain ferromagnetic particles (biogenic magnetite)......Page 500
FUTURE PERSPECTIVES......Page 502
References......Page 503
PART 5—Movement......Page 510
INTRODUCTION\n......Page 512
Physical Principles of Buoyancy\n......Page 513
Oocytes, Eggs, and Embryos\n......Page 516
Yolk-sac Larvae\n......Page 519
ONTOGENY AND FUNCTION OF THE SWIMBLADDER\n......Page 520
BEHAVIOURAL PHYSIOLOGY OF BUOYANCY\n......Page 525
References......Page 529
Why Fish Swim: A Matter of Speed......Page 540
How Swimming Speed Scales with Size......Page 542
The Hydrodynamics of Scaling: Why many Fish Larvae Undulate their Body......Page 543
What is Undulatory Swimming: Some Terminology......Page 545
Fast start\n......Page 546
Cyclic swimming\n......Page 548
Intermittent swimming......Page 549
Flow Pattern and What They can Tell Us: Some Terminology......Page 551
Flow Pattern and Body Size Effects......Page 552
Flow Pattern during Cyclic Swimming......Page 553
Muscle Fibres Required for Larval Swimming\n......Page 556
Muscle Architecture Required for Larval Swimming......Page 558
References......Page 560
PART 6—Control and Defense......Page 568
INTRODUCTION\n......Page 570
DEVELOPMENT OF THE GUT\n......Page 571
Extrinsic Innervation\n......Page 573
DEVELOPMENT OF THE ENTERIC NERVOUS SYSTEM\n......Page 574
Guidance Cues\n......Page 576
Differentiation\n......Page 578
NEUROTRANSMITTERS IN THE DEVELOPING ENTERIC NERVOUS SYSTEM\n......Page 579
GUT MOTILITY\n......Page 580
Development of Gut Motility\n......Page 582
Development of Nervous Control of Gut Motility\n......Page 583
References......Page 584
INTRODUCTION......Page 590
Primitive and Definitive Haematopoiesis\n......Page 591
The Origin of Immunocompetent Cells\n......Page 595
THE DEVELOPMENT OF IMMUINIOLOGICAL CAPACITIES\n......Page 602
Cells of the Innate Immune System\n......Page 605
Interferons\n......Page 608
Lysozyme hydrolyses......Page 609
FUTURE PERSPECTIVES......Page 611
References......Page 612
PART 7—Functional Changes in Form......Page 622
INTRODUCTION\n......Page 624
Production of Thyroid Hormones......Page 627
TH Uptake\n......Page 629
TH Metabolism\n......Page 630
Mechanism of Action of Thyroid Hormones\n......Page 634
Deiodinases......Page 636
External Morphology......Page 637
Skin and Pigmentation\n......Page 638
Musculo-skeletal System\n......Page 639
Haematopoietic System\n......Page 641
Miscellaneous\n......Page 642
FUTURE PERSPECTIVES\n......Page 643
References......Page 644
The Anadromous Life History Strategy\n......Page 656
Desmoltification\n......Page 658
Parr Maturation......Page 659
Landlocked Atlantic Salmon......Page 660
Growth pattern in freshwater\n......Page 661
Key role of growth hormone......Page 664
lon/Osmoregulation\n......Page 668
The role of chloride cells in ion transport\n......Page 669
Development of salinity tolerance: cellular and biochemical basis\n......Page 670
The role of the intestine in hydro-mineral balance\n......Page 671
Light-brain-pituitary Axis and Endocrine Influence\n......Page 672
Neuroendocrine Development\n......Page 674
PHYSIOLOGICAL BASIS FOR MORPHOLOGICAL CHANGES\n......Page 676
Photoperiod\n......Page 677
Temperature\n......Page 680
Flow and Water Quality\n......Page 683
FUTURE PERSPECTIVES\n......Page 684
References......Page 685
Glossary\r......Page 700
Species Index\r......Page 710
Common Name Index\r......Page 720
Subject Index......Page 732