دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Feng Fu
سری:
ISBN (شابک) : 9780367444525, 9781003009818
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 251
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Fire Safety Design for Tall Buildings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی ایمنی در برابر آتش برای ساختمان های بلند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Author 1 Introduction 1.1 Aims and Scope 1.2 Main Fire Safety Design Issues for Tall Buildings 1.3 Structure of the Book Notes References 2 Regulatory Requirements and Basic Fire Safety Design Principles 2.1 Introduction 2.2 Fire Incidents and Fire Tests of Tall Buildings Worldwide 2.2.1 Grenfell Tower 2.2.1.1 The New Cladding System 2.2.1.2 Compartment and Evacuation Route for Grenfell Tower 2.2.1.3 Collapse Potential for Grenfell Tower 2.2.1.4 Major Findings from Interim Report of British Research Establishment (2017) 2.2.2 Twin Tower 2.2.3 World Trade Center 7 2.2.4 Other Fire Incidents of Tall Buildings 2.2.4.1 First Interstate Bank Building in Los Angles 2.2.4.2 Plasco Shopping Center, Iran 2.2.4.3 Faculty of Architecture Building, Delft University 2.2.4.4 Windsor Tower, Spain 2.2.5 Cardington Fire Test 2.2.5.1 Introduction of the Test 2.2.5.2 Failure Modes for Buildings in Fire 2.2.6 Discussion 2.3 Current Design Guidance and Regulations to Fire Safety in High-Rise Buildings 2.3.1 British Design Guidance and Regulations 2.3.1.1 Building Regulations 2010—Approved Document B 2.3.1.2 The FSO and Housing Act 2004 2.3.1.3 BS 7974:2019 2.3.1.4 BS 9999:2017 2.3.1.5 BS 5950-8:2003 2.3.1.6 BS 476-20:1987 2.3.1.7 Design Guidelines from IStructE and Steel Construction Institute 2.3.2 Eurocode 2.3.3 Guidelines from International Organization for Standardization 2.3.3.1 ISO 24679-1:2019(en) 2.3.3.2 ISO 16730-1 and ISO 16733-1 2.3.3.3 ISO 834-1:1999 2.3.4 US Design Guidance 2.3.4.1 National Fire Protection Association 2.3.4.2 International Code Council— International Fire Code® (IFC®) 2.3.4.3 American Society for Testing and Materials (ASTM) 2.3.4.4 American Society of Civil Engineers 2.3.4.5 Federal Standards and Guidelines 2.3.5 Chinese Design Guidance 2.3.6 New Zealand Code NZS 3404 Part 1:1997 2.3.7 Australian Code AS 4100:1998 2.4 Basic Principles for Fire Safety of Tall Buildings 2.4.1 Main Design Objective 2.4.2 Main Design Tasks 2.4.3 Structural Fire Design 2.4.3.1 Key Design Tasks in Structural Fire Design 2.4.3.2 Design Approach 2.4.3.3 Pros and Cons of the Two Design Methods 2.4.4 Robustness of the Structure in Fire 2.4.5 Fire Modeling 2.4.5.1 Modeling the Atmosphere Temperature Induced by Fire 2.4.5.2 Modeling the Thermal Response of Load-Bearing Building Elements 2.4.5.3 Summary References 3 Fundamentals of Fire and Fire Safety Design 3.1 Introduction 3.2 Fire Development Process 3.3 Design Fire Temperature 3.1.1 Standard Fire Temperature–time Curve 3.1.2 The Parametric Temperature–Time Curves 3.1.3 Summary 3.4 Design Fire in a Compartment 3.4.1 Characterization of Compartment 3.4.1.1 Characterization of Fire Enclosure 3.4.1.2 Characterization of Openings 3.4.1.3 Duration of Fire to be Adopted in Design 3.4.2 Fuel-Controlled and Ventilation-Controlled Fire 3.4.3 Long-Cool and Short-Hot Fire 3.4.4 Fully Developed Fire 3.4.5 Localized Fire 3.4.5.1 Calculation of Thermal Action of a Localized Fire from Eurocode 3.4.6 Traveling Fire 3.4.7 Fire Scenarios for Tall Buildings 3.5 Fire Severity 3.6 Fire Load 3.6.1 Fire Load Calculation from Eurocode 1 3.6.2 Fire Load Density from Eurocode 1 3.7 Fire Spread 3.8 Routes of Fire Spread 3.8.1 Horizontal Spread of Fire 3.8.2 Vertical Spread of Fire 3.8.2.1 Fire Spread Through Ducts, Shafts, and Penetrations (Internal) 3.8.2.2 Fire Spread Through Façade 3.9 Structural Fire Design 3.9.1 Determine the Compartment Temperature (Design Fire) 3.9.2 Determine the Thermal Response of Structural Members 3.9.3 Heat Transfer 3.9.3.1 Thermodynamics of Heat Transfer 3.9.3.2 Eurocode Formula to Determine Member Temperature 3.9.4 Material Degradation at Elevated Temperatures 3.9.4.1 Degradation of Steel Material in Fire 3.9.4.2 Degradation of Concrete Material in Fire 3.9.5 Design Values of Material Properties Under Fire 3.9.6 Design of Structural Members in Fire 3.9.6.1 Mechanical Design Approaches of Structural Members in Fire 3.9.6.2 The Acceptance Criteria in Designing Structural Members for Tall Buildings 3.10 Fire Resistance 3.10.1 Methods to Determine Fire Resistance 3.10.2 Fire Resistance Rating 3.10.3 Fire Resistance Test for Load- Bearing Structural Members 3.10.4 Fire Resistance Requirements for Elements of a Tall Building 3.11 Fire Protection Method 3.11.1 Active Control System 3.11.2 Passive Control System 3.11.2.1 Intumescent Paints 3.11.2.2 Spray Fire Protection 3.11.2.3 Board Fire Protection 3.11.3 Fire Resistance Test for Protected Members References 4 Structural Fire Design Principles for Tall Buildings 4.1 Introduction 4.2 Key Tasks for Structural Fire Design 4.2.1 Building Elements to be Considered in Design for Fire 4.2.2 Design of Structural Members in Fire 4.2.3 Design Procedures 4.3 Fire Resistance Rating for Load-Bearing Structural Members 4.4 Design of Concrete Members in Fire 4.4.1 Thermal Response of Concrete in Fire 4.4.2 Spalling 4.4.2.1 Types of Spalling 4.4.2.2 Prevention of Spalling 4.4.3 Simplified Calculation Methods for Concrete Members from EC2 EN 1992-1-2:2004/ A1:2019 (E), 500°C Isotherm Method 4.4.4 Concrete Cover and Protective Layers 4.5 Design of Steel Members in Fire 4.5.1 Thermal Response of Steel in Fire 4.5.2 The Critical Temperature Method (BS5950, 2003 and EN 1993-1-2 2005) 4.5.2.1 Assumptions 4.5.2.2 Load Ratio (Degree of Utilization) 4.5.2.3 Critical Temperature Method for Constrained Members 4.5.2.4 Critical Temperature Method for the Compression and Unconstrained Members 4.5.2.5 Column Buckling Resistance in Fire 4.5.3 Lateral Torsional Buckling of Steel Beams 4.5.4 Beams in Line with Compartment Walls 4.6 Moment Capacity Approach (Section Method) 4.6.1 Method of Calculation 4.6.1.1 Temperature Profile 4.6.1.2 Reduced Strength of Each Element 4.6.1.3 Reduced Flexural Strength Calculation 4.6.2 Case Study for Flexural Capacity of Reinforced Concrete Beams Using Moment Capacity Approach 4.6.3 Flexural Capacity of Steel Beams Using Moment Capacity Approach 4.7 Design of Composite Beams Under Fire 4.7.1 Resistance of Shear Connection in Fire 4.7.2 Effect of Degree of Shear Connection 4.7.3 Edge Beams in Fire 4.7.4 Case Study of Composite Beam Design in Fire 4.8 Design of Composite Slabs in Fire 4.8.1 Membrane Actions in Fire 4.8.2 Strength Design Composite Slabs 4.8.2.1 Calculation Method Based on Plastic Theory 4.8.2.2 Calculation Method Considering Membrane Action 4.8.3 Insulation Criterion of Composite Slabs 4.8.4 Deformation Design of Composite Slabs in Fire 4.9 Design of Post-Tension Slabs in Fire 4.10 Design of Connections Under Fire 4.11 Design of Beam Openings 4.12 Summary of Structural Fire Design Methods 4.12.1 Comparison of Moment Capacity Method and Critical Temperature Method 4.12.2 Comparison of Three Major Methods References 5 Typical Fire Safety Design Strategy for Tall Buildings 5.1 Introduction 5.2 Fire Safety Design Objectives and Strategies for Tall Buildings 5.2.1 Design Objectives 5.2.2 Design Strategies 5.2.3 Design Process 5.3 Design Strategy for Tall Buildings in Fire 5.3.1 Prescriptive Design 5.3.2 Performance-Based Design 5.3.2.1 Step 1: Set Fire Safety Goals and Objectives 5.3.2.1 Step 2: Determine Performance Criteria 5.3.2.2 Step 3: Analysis of Fire Scenarios 5.3.2.3 Step 4: Protection Strategy 5.3.2.4 Step 5: Determine Whether the Fire Safety Goals are Met 5.3.3 Summary 5.4 Fire Risk Analysis for Tall Buildings 5.4.1 Qualitative Fire Risk Assessment 5.4.2 Quantitative Fire Risk Assessment 5.5 Deterministic and Probabilistic Assessments to Determine the Worst-Case Fire Scenario 5.5.1 Deterministic Approach 5.5.2 Probabilistic Approach 5.6 Compartment Design 5.6.1 Key Components in a Compartment 5.6.1.1 Fire Doors Design 5.6.1.2 Compartment Wall Design 5.6.1.3 Compartment Floor Design 5.6.2 Fire Stop 5.6.3 Cavity Barrier 5.6.4 Fire Damper 5.6.5 Integrity of Compartmentation in Buildings 5.6.5.1 Measures to Accommodate Movements of Compartment Walls Due to Fire 5.6.5.2 Control Movement of Slab 5.7 Evacuation Route Design 5.7.1 Number of Escapes Routes and Exits 5.7.2 Design of Exits 5.7.3 Exit Route 5.7.4 Travel Distance 5.7.5 Staircases and Elevators 5.7.5.1 Protected Staircases and Elevators 5.7.5.2 Fire Lift Lobby 5.7.5.3 External Escape Stairs 5.7.6 Phased/Progressive Evacuation 5.7.7 Refuge 5.7.8 Clear Sign for Evacuation 5.7.9 Computational Models for Evacuation Simulation 5.8 Emergency Vehicle and Firefighter Access 5.8.1 Equipment for Firefighting 5.8.2 Firefighting Lift, Lobby, Shaft, and Stair 5.9 Resisting Fire Spread Through Building Envelope 5.9.1 Resisting Fire Spread Over External Walls 5.9.2 Fire-Resisting Design for Glazing 5.10 Fire Detection, Alarm, and Communication System 5.10.1 Central Fire Alarm System 5.10.2 Smoke Detections 5.10.3 Smoke Control 5.11 Fire and Smoke Suppression System 5.12 Comparison for Fire Protection System for Tall Buildings Across the World 5.13 Case Study of Fire Safety Deign for Burj Khalifa 5.13.1 Evacuation and Refuge 5.13.2 Firefight Access 5.13.3 Staircase and Elevator 5.13.4 Alarm and Warning System 5.13.5 Fire Suppression 5.13.6 Special Water Supply and Pumping System 5.14 Case Study: Structural Fire Design of the Shard 5.14.1 Introduction of the Project 5.14.2 Structural System 5.14.3 Determine the Worst-Case Fire Scenarios 5.14.4 Design for Fire Resistance 5.15 Structural Framing and Structural System References 6 Fire Analysis and Modeling 6.1 Introduction 6.2 Determining Compartment Fire 6.2.1 Simplified Models from Eurocode 6.2.1.1 Compartment Fires 6.2.1.2 Localized Fires 6.2.2 Advanced Models 6.2.2.1 Zone Models 6.2.2.2 Limitations of Zone Modeling 6.2.2.3 Computational Fluid Dynamics (CFD) Fire Modeling 6.3 Determining Member Temperature 6.3.1 Simplified Temperature Increase Models from Eurocode 6.3.2 Heat Transfer Using Finite Element Method 6.3.2.1 Theoretical Principles 6.3.2.2 Analysis Software and Modeling Example 6.4 Determining Structural Response of Structural Members in Fire 6.4.1 Multi-Physics Fire Analysis (Thermal Mechanical Coupled Analysis) ® 6.4.1.1 Abaqus® 6.4.1.2 ADINA 6.4.2 Sequentially Coupled Thermal-Stress Analysis 6.4.2.1 Sequentially Coupled Thermal- Stress Analysis Using Abaqus® 6.4.2.2 Sequentially Coupled Thermal-Stress Analysis Using ANSYS 6.4.2.3 Partial Thermal-Mechanical Analyses in OpenSees 6.4.2.4 Codified Thermal-Mechanical Coupled Analysis 6.5 Probabilistic Method for Fire Safety Design 6.5.1 Reliability-Based Structural Fire Design and Analysis 6.5.1.1 The Basic Reliability Design Principles 6.5.1.2 Reliability-Based Design and Analysis Procedure 6.5.1.3 Case Study for Reliability Analysis for Individual Members 6.5.1.4 Case Study for Reliability Analysis for a Whole Building 6.5.2 Fire Fragility Functions 6.5.2.3 Compartment-Level Fragility Function 6.5.2.4 Building-Level Fragility Function 6.5.3 Other Probabilistic Approaches in Fire Safety Design 6.6 Major Fire Analysis Software 6.6.1 Ozone Software 6.6.2 CFAST 6.6.3 FDS 6.6.4 LS-DYNA 6.6.5 OpenSees References 7 Preventing Fire-Induced Collapse of Tall Buildings 7.1 Introduction 7.2 Design Objective and Functional Requirement for Structural Stability in Fire 7.3 Importance of Collapse Prevention of Tall Buildings in Fire 7.4 Collapse Mechanism of Tall Buildings in Fire 7.4.1 Factors Affecting Thermal Response and Failure Mechanism of Individual Members 7.4.2 Behavior and Failure Mechanism of Steel Beams in Fire 7.4.2.1 Local Buckling of Beams in Connection Area 7.4.2.2 Excessive Deflection 7.4.3 Behavior and Failure Mechanism of Slabs in Fire 7.4.3.1 Membrane Actions of Slabs 7.4.3.2 Effect of Different Fire Scenarios in Composite Slabs 7.4.3.3 Other Research in Composite Slabs in Fire 7.4.4 Behavior and Failure Mechanism of Steel Column in Fire 7.4.4.1 Change of Column Force in Fire 7.4.4.2 Out Plane Bending of Columns 7.4.4.3 Effect of the Slenderness Ratios 7.4.5 Behavior of Connections 7.4.6 Behavior and Failure Mechanism of Concrete Column in Fire 7.5 Whole-Building Behavior of Tall Buildings in Fire 7.5.1 Research of Fu (2016b) 7.5.2 Twin Tower Collapse (WTC1 and WTC2) 7.5.2.1 Structural Framing for WTC1 7.5.2.2 Reason for The Collapse of WTC1 7.5.3 WTC7 7.5.3.1 Structural Framing for WTC7 7.5.3.2 Reason for The Collapse of WTC7 7.5.4 Cardington Test 7.5.4.1 Severity of The Fire 7.5.4.2 Structural Framing 7.5.5 Other Research in Whole Building Behavior 7.6 Overall Building Stability System Design for Fire 7.6.1 Bracing System 7.6.2 Core Wall Design 7.7 Methods for Mitigating Collapse of Buildings in Fire References 8 New Technologies and Machine Learning in Fire Safety Design 8.1 Introduction 8.2 New Technologies in Fire Safety 8.2.1 PAVA Alarm Systems 8.2.2 IOT in Fire Safety 8.2.2.1 Fire Safety Sensors and BMS 8.2.2.2 Fire Suppression 8.3 Machine Learning in Fire Safety Design 8.3.1 Machine Learning and Its Application in the Construction Industry 8.3.2 Problems Experienced in the Conventional Structural Fire Analysis Approach 8.3.3 Predicting Failure Patterns of Simple Steel-Framed Buildings in Fire 8.3.3.1 Define Failure Pattern 8.3.3.2 Dataset Generation Using the Monte Carlo Simulation and Random Sampling 8.3.3.3 Training and Testing 8.3.3.4 Failure Pattern Prediction 8.3.3.5 Fire Safety Design and Progressive Collapse Potential Check Based on Prediction Results 8.3.4 Predicting and Preventing Fires with Machine Learning 8.3.5 Machine Learning of Fire Hazard Model Simulations for Use in Probabilistic Safety Assessments at Nuclear Power Plants 8.3.6 Learning Algorithms and Programming Language 8.3.6.1 Learning Algorithms 8.3.6.2 Programming Language References 9 Post-Fire Damage Assessment 9.1 Introduction 9.2 Post-Fire Damage Assessment 9.2.1 Post-Fire Damage Assessment of Concrete Structure 9.2.1.1 Visual Inspection 9.2.1.2 Schmidt Rebound Hammer 9.2.1.3 Petrographic Analysis 9.2.1.4 Spectrophotometer Investigations 9.2.1.5 Reinforcement Sampling 9.2.1.6 Compression Test 9.2.2 Post-Fire Damage Assessment of Structural Steel Members 9.2.2.1 Methods for Post-Fire Damage Assessment 9.2.2.2 Nondestructive Post-Fire Damage Assessment of Structural Steel Members Using the Leeb Harness Method References Index