دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Nobuo Morita
سری:
ISBN (شابک) : 0323911129, 9780323911122
ناشر: Gulf Professional Publishing
سال نشر: 2021
تعداد صفحات: 550
[551]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 38 Mb
در صورت تبدیل فایل کتاب Finite Element Programming in Non-linear Geomechanics and Transient Flow به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برنامه ریزی المان محدود در ژئومکانیک غیر خطی و جریان گذرا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Finite Element Programming in Nonlinear Geomechanics and Transient Flow Copyright Page Contents Introduction I. Basics of the finite element method 1 Fundamental equations of poro-elasticity and fluid flow through porous media 1.1 Force, displacement, stress, strain, and displacement–strain relations 1.1.1 Three-dimensional stresses Strain 1.1.2 For three-dimensional problems 1.1.3 Displacement–strain relations 1.1.3.1 Number of variables 1.2 Equation of equilibrium and stress–strain relation 1.2.1 Equation of equilibrium 1.2.2 Stress–strain relations for isotropic linearly elastic materials 1.2.3 Number of variables and equations 1.2.4 Stress–strain relations for porous media 1.3 Fluid flow through porous media 1.4 Matrix expression 2 Finite element methods 2.1 Discretization using the virtual work principle 2.2 Discretization using the minimization of total potential energy 2.3 Discretization using the residual method 2.4 Discretization of the set of flow equations through porous media using the residual method 3 Finite element method with analytical integration using simple elements 3.1 Discretization using 3D tetrahedral elements 3.2 Analytical integrations 3.3 Assembling the elements 3.4 Nodal forces 3.5 Body forces 4 Finite element method with isoparametric elements 4.1 Isoparametric elements 4.2 Brick elements 4.2.2 Twenty-node brick element 4.2.3 Elements compatible with the 8-node and 20-node brick elements 4.2.4 Ten-node parabolic tetrahedron element 4.3 Infinite element 4.3.1 Twelve-node infinite element 5 Numerical integration 5.1 Gaussian integration 5.2 Integration formula for triangle and tetrahedron shape functions 6 Solution of linear simultaneous equations 6.1 Matrix transformation for the boundary condition given by local coordinates 6.2 Solution of linear simultaneous equations 6.2.1 Gaussian elimination 6.2.2 Frontal method 6.2.2.1 Variable bandwidth elimination method 6.2.3 Conjugate gradient method 7 Convergence and error analysis 7.1 Theoretical estimation of error 7.2 Numerical evaluation of error 8 Application of the finite element method to nonlinear geological materials 8.1 Standard triaxial rock test equipment and typical test results 8.1.1 Stress and strain invariants 8.1.2 Nonlinear elastic coefficients 8.2 Nonlinearity at a low-stress state 8.3 Shear-type nonlinear strain 8.3.1 Yield stress 8.3.2 Maximum stress yield theory: Rankine theory 8.3.3 Maximum strain yield theory (Saint-Venant theory) 8.3.4 Maximum shear stress yield theory (Tresca) 8.3.5 Max octahedral shear stress yield theory (von Mises yield criterion) 8.3.6 Mohr’s linear yield theory 8.3.7 Mohr’s nonlinear yield theory 8.3.8 Drucker–Prager yield theory 8.3.9 Lade yield theory 8.4 Yield envelope fitted to real polyaxial stress–strain empirical data 8.4.1 Mohr–Coulomb 8.4.2 Drucker–Prager 8.4.3 Lade model 8.4.4 Solenhofen limestone 8.4.5 Dunham dolomite 8.4.6 Fuji River sand 8.5 Incremental form of nonlinear stress strain for application of the finite element method 8.6 Application of the Newton–Raphson method to nonlinear problems 8.7 Calculation method of λ, Dep 8.8 Implementation 8.9 Construction of constitutive relations from triaxial data 9 Coupling geomechanics and transient fluid flow 9.1 Fundamental equations for isotropic poro-elasticity problems 9.2 Discretization using the virtual work principle 9.3 Discretization of transient flow equations through porous media 9.4 Coupling geomechanics and transient fluid flow 9.4.1 Full coupling 9.4.2 Sequential coupling 9.4.2.1 Fixed strain method 9.4.2.2 Fixed total stress method 9.4.2.3 Drained split method 9.4.2.4 Undrained split method 9.5 Stability of the sequential methods 9.5.1 One-dimensional compaction problem coupled with fluid flow and geomechanics 9.5.2 Stability analysis of the coupled problem 9.5.3 Stability of drained split method 9.5.4 Stability of undrained split method 9.5.5 Stability of fixed strain method 9.5.6 Stability of fixed total stress method 9.5.7 Numerical example of one-dimensional compaction problem using the fixed total stress method 9.6 Sequential coupling with commercially available reservoir models 9.6.1 Sequential calculation of flow and geomechanics with uniaxial compaction assumption 9.6.1.1 Approximation of reservoir section 9.6.1.1.1 Approximation of overburden and underburden deformation 9.6.1.2 Single-phase or multiple-phase problems assuming uniaxial compaction 9.6.1.3 Calculation procedure 9.6.1.3.1 Calculations of the displacement and stress and pore pressure changes in the overburden and underburden section 9.6.2 Single or multiphase problems without assuming uniaxial compaction 9.6.2.1 Fixed strain method 9.6.2.2 Fixed total stress method 9.6.3 One-step undrained method for short period production problems 9.6.4 General multiphase problems Further reading II. Applications of Flow3D and Geo3D to real field problems 10 Pressure profile around perforations—field problems using Flow3D 10.1 Pressure profile around a single perforation 10.1.1 Analytical solution 10.2 Numerical solution for pressure distribution around a single perforation 10.2.1 Pressure distribution around a perforation without permeability damage 10.2.1.1 Parameters for perforation flow model: permeability is uniform over entire domain 10.2.2 Pressure distribution around a perforation with damaged permeability 10.2.2.1 Parameters for perforation flow model: permeability is damaged 10.2.3 Gas flow 10.3 Pressure distribution around a perforation for gravel packed well 10.4 Quantitative analysis of the effect of perforation interaction on flow efficiency 10.4.1 Evaluation of flow performance 10.4.1.1 Quantification of flow performance 10.4.1.2 Effect of perforation pattern and shot density 10.4.1.3 Permeability anisotropy impact on perforations 10.4.1.4 Effect of perforation length 10.4.1.5 Effect of perforation diameter 10.4.1.6 Effect of mud damage and perforation damage 10.4.1.7 Effect of sand production Nomenclature References 11 Evaluation of mechanical stability of perforations using Geo3D 11.1 Stability of perforations during oil and gas production 11.1.1 Field applications 11.2 Field observation of sand-production problems 11.2.1 How fluid flow affects sand production from a three-dimensional perforation cavity 11.2.2 How drawdown necessary to produce without sand changes during reservoir life 11.2.3 Why sand problems often occur after water cut 11.2.3.1 What can be learned from a step-flow test? 11.2.4 Why sand flow is high when production is restarted 11.2.4.1 Perforation design minimizing sand problems 11.3 A quick method to forecast the possibility of sand problems: Perforation stability analysis using TWC or TPS test equi... 11.4 Concluding remarks Nomenclature Further reading 12 Numerical methods for the borehole breakout problems using Geo3D 12.1 Rock failure and failure theories 12.1.1 Total failure, local failure, and internal failure 12.1.1.1 Evaluation of local failures 12.1.1.2 Local failure criteria 12.1.1.2.1 Mohr–Coulomb 12.1.1.2.2 Drucker–Prager 12.1.1.2.3 Mogi 12.1.1.2.4 Modified Lade (expressed by Russell Ewy) 12.1.1.2.5 Modified Lade (expressed by Eekelen) 12.1.1.2.6 Lade model 12.1.2 Critical plastic failure theory 12.2 Failure envelopes from empirical results 12.2.1 Castlegate sandstone 12.2.2 Rozbark sandstone and sensitivity analysis 12.2.3 Dunham dolomite 12.2.4 Mizuho trachyte 12.2.5 Shirahama sandstone 12.2.6 Izumi sandstone 12.2.7 Horonai sandstone 12.2.8 Yubari shale 12.2.9 Yamaguchi marble 12.2.9.1 Summary of the fitness of failure envelope to the polyaxial experimental data 12.3 Stress state around an inclined well drilled through inclined formation 12.3.1 Analytical solution to calculate stress state around a borehole 12.3.2 Calculation of principal stresses 12.3.3 Zoback’s breakout angle estimation 12.3.4 Breakout angle and depth for Mogi and Lade failure theories 12.3.4.1 Mogi’s failure theory 12.3.4.2 Breakout depth 12.3.4.2.1 Lade and Drucker–Prager failure theory 12.3.5 Definition of UCS 12.3.6 Breakout measurements 12.4 Comprehensive analysis of stress state around a borehole with temperature, swelling, and pore pressure change for laye... 12.4.1 General statement 12.4.2 Parameter study with typical field conditions 12.4.2.1 Stress state around a borehole for the base borehole conditions 12.4.2.1.1 Stress state: the base condition shown in Table 12.1 12.4.2.2 Stress state for well inclination (γ) 12.4.2.3 Stress state for pore pressure change due to osmosis effect 12.4.2.4 Stress state due to swelling effect 12.4.2.5 Stress state due to temperature effect 12.4.2.6 Stress state due to overbalance effect 12.4.2.7 Stress state due to drawdown effect 12.4.2.8 Stress state due a hard bedding layer (γ=0 degrees) 12.4.2.9 Stress state due to a soft bedding layer existing (γ=0 degrees) 12.4.2.10 Stress state with a 60-degree hard bedding layer (γ=60 degrees) 12.4.2.11 Stress state due to a soft bedding layer with 60-degree inclination (γ=60 degrees) 12.4.2.12 Stress state for formation with transversely isotropic elastic material 12.4.2.13 Stress state around a borehole in depleted reservoir condition 12.4.2.13.1 Stress state around borehole under the depleted reservoir condition 12.4.2.13.2 Stress state around borehole under the depleted reservoir condition with swelling effect 12.4.2.13.3 Stress state around borehole under the depleted reservoir condition with sandstone nonlinearity effect 12.5 Failure theories to predict breakout angle around a borehole 12.5.1 Rock failure criteria 12.5.1.1 Mohr–Coulomb 12.5.1.2 Mogi 12.5.1.3 Drucker–Prager 12.5.1.4 Lade 12.5.2 Failure function to predict breakout angle with various controllable parameters 12.5.3 Breakout angle predicted by the four rock failure criteria of vertical well in the base reservoir conditions 12.5.3.1 The base reservoir condition 12.5.3.2 Well inclination effect 12.5.3.2.1 Well azimuth=0 degrees, well angle=30 degrees 12.5.3.2.2 Well azimuth=0 degrees, well angle=60 degrees 12.5.3.2.3 Well azimuth=0 degrees, well angle=90 degrees 12.5.3.2.4 Well azimuth=90 degrees, well angle=30 degrees 12.5.3.2.5 Well azimuth=90 degrees, well angle=60 degrees 12.5.3.2.6 Well azimuth=90 degrees, well angle=90 degrees 12.5.3.3 Osmosis effect 12.5.3.4 Swelling effect 12.5.3.5 Temperature effect 12.5.3.6 Overbalance effect 12.5.3.7 Drawdown effect 12.5.3.8 Hard bedding layer 12.5.3.8.1 Hard bedding layer (γ=0 degrees) 12.5.3.8.2 Hard bedding layer (γ=60 degrees) 12.5.3.9 Soft bedding layer 12.5.3.9.1 Soft bedding layer (γ=0 degrees) 12.5.3.9.2 Soft bedding layer (γ=60 degrees) 12.5.3.10 Formation with transversely isotropic elastic material 12.5.3.10.1 Well angle=0 degrees 12.5.3.10.2 Well angle=30 degrees 12.5.3.10.3 Well angle=60 degrees 12.5.3.10.4 Well angle=90 degrees 12.5.4 Breakout angle predicted by the four rock failure criteria of horizontal well in depleted reservoir condition 12.5.4.1 Depleted reservoir condition-base case 12.5.4.2 Osmosis effect 12.5.4.3 Swelling effect 12.5.4.4 Temperature effect 12.5.4.5 Overbalance effect 12.5.4.6 Drawdown effect 12.5.4.7 Sandstone nonlinearity effect 12.5.4.7.1 Summary 12.6 Effect of controllable parameters on safe mud window design 12.6.1 Introduction of safe mud weight window 12.6.2 Optimal safe mud weight window design with various controllable parameters 12.6.2.1 Polar diagram of safe mud window in the base reservoir condition 12.6.2.2 The base reservoir condition without any other effect: the normal faulting regime 12.6.2.3 The base reservoir condition without any other effect: the strike-slip faulting regime 12.6.2.4 The base reservoir condition without any other effect: the reverse faulting regime 12.6.2.5 Critical mud weight polar diagram for shale swelling 12.6.2.5.1 0.1% and 0.3% shale swelling under the normal faulting regime 12.6.2.5.2 0.2% shale swelling under the strike-slip faulting regime 12.6.2.5.3 0.2% shale swelling under the reverse faulting regime 12.6.2.6 Safe mud weight window due to temperature effect 12.6.2.7 Safe mud weight window due to hard bedding layer effect 12.6.2.7.1 Hard bedding layer with inclination (γ=0 degrees) 12.6.2.8 Safe mud weight window due to soft bedding layer effect 12.6.2.8.1 Soft bedding layer with inclination (γ=0 degrees) 12.6.2.9 Safe mud weight window due to formation with transversely isotropic elastic material effect 12.7 Conclusion Nomenclature References Further reading 13 Casing collapse for hydrostatic and geotechnical loads—Geo3D analysis 13.1 Casing collapse for hydrostatic load 13.1.1 Type A: the standard casing failure criterion applied to simple loading 13.1.1.1 Equivalent yield strength σyieldee for nonzero axial stress and nonzero internal pressure 13.1.1.1.1 Procedure 13.1.2 Type B: failure criterion under geotechnical load 13.1.2.1 Empirical method to predict the critical-strain and the limit-load to induce a buckling for compression without la... 13.1.2.1.1 Experimental setup 13.1.2.1.2 Empirical results 13.1.2.1.3 Analyses of limit load of casings 13.1.2.1.4 Summary for the uniaxial compression tests 13.1.2.2 Critical strain initiating a local wrinkle for axial compression with lateral restraint 13.1.2.2.1 Experimental setup 13.1.2.3 Critical strain and stress initiating necking with axial extension 13.1.2.3.1 Experimental setup 13.1.2.4 Analysis of the experimental results 13.1.2.4.1 Stress–strain curves 13.1.2.4.2 Ultimate strength and deformation 13.1.2.4.3 Minimum elongation of a casing 13.1.2.4.4 Summary of the uniaxial extension tests 13.1.2.5 Deformation of casings with a line external load 13.1.2.5.1 Experimental results 13.1.2.5.2 Simulation and analyses 13.1.2.5.3 Field applications 13.1.2.5.4 A field application example for liner stability of cased hole 13.1.2.5.5 Reservoir description 13.2 Concluding remarks Nomenclature Further reading 14 Three-dimensional reservoir compaction problems with coupled Geo3D code 14.1 Introduction of reservoir compaction problems 14.2 Strain nuclei method 14.3 Analytical solution at the center of a reservoir for a radial reservoir 14.4 Subsidence, pore pressure, and stress change in the overburden formation using the finite element method coupled with ... 14.4.1 Methods to evaluate the subsidence and compaction 14.4.2 Subsidence and compaction prediction using the sequential coupling method using the fixed total stress method 14.4.3 Subsidence and compaction prediction for undrained elastic moduli 14.4.4 Subsidence and compaction prediction for drained elastic moduli 14.4.5 Field applications 14.4.5.1 Magnitude of stress and pore pressure changes and strain induced by compaction 14.5 Parametric analysis of subsidence and compaction 14.5.1 Earth deformation during reservoir compaction 14.5.2 Subsidence and horizontal movement maps References Further reading Appendix A: Apparent elastic modulus with pore fluid III. Programming of the finite element methods Appendix B: Computer program structure for transient fluid flow problems through porous media B.1 Program Flow3D B.2 Input example FLOW3D Appendix C: Program Geo3D C.1 Input example for Geo3D C.2 Input example for Geo3D Appendix D: Program COEFI for determining the parameters of the nonlinear constitutive relations from a set of triaxial test... D.1 Calculation procedure D.2 Input file “Coefi.inp” Index Back Cover