دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: 1st نویسندگان: Klaus-Jurgen Bathe سری: ISBN (شابک) : 0133014584, 9780133014587 ناشر: Prentice Hall سال نشر: 1995 تعداد صفحات: 1051 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Finite Element Procedures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویه های اجزای محدود نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای دروس روش اجزای محدود، تحلیل اجزای محدود در گروه های عمران، مکانیک، هوافضا، کشاورزی و مکانیک تدریس می شود. دورهای که این کتاب برای آن مناسب است معمولاً به دانشجویان ارشد یا فارغالتحصیلان آموزش داده میشود. جامع - این متن طیف کاملی از روشهای اجزای محدود مورد استفاده در عمل مهندسی را برای کاربردهای واقعی در طراحی به کمک رایانه بررسی میکند. این نه تنها مقدمهای بر روشهای اجزا محدود و مشترکات در تکنیکهای مختلف ارائه میکند، بلکه روشهای پیشرفته را نیز بررسی میکند - با تمرکز بر آنچه که به "تکنیکهای کلاسیک" تبدیل میشوند - رویهها. که برای سالهای آینده برای تحلیل اجزای محدود استاندارد و معتبر خواهد بود.
For courses in finite element methods, finite element analysis taught in departments of Civil, Mechanical, Aerospace, Agriculture, and Mechanics departments. Course for which this book is appropriate is usually taught to seniors or graduate students.Comprehensive -- this text explores the full range of finite element methods used in engineering practice for actual applications in computer-aided design. It provides not only an introduction to finite element methods and the commonality in the various techniques, but explores state-of-the-art methods as well -- with a focus on what are deemed to become "classical techniques" -- procedures that will be standard and authoritative for finite element analysis for years to come.
Preface xiii CHAPTER ONE — An Introduction to the Use of Finite Element Procedures 1 1.1 Introduction 1 1.2 Physical Problems, Mathematical Models, and the Finite Element Solution 2 1.3 Finite Element Analysis as an Integral Part of Computer-Aided Design 11 1.4 A Proposal on How to Study Finite Element Methods 14 CHAPTER TWO Vectors, Matrices, and Tensors 17 2.1 Introduction 17 22 Introduction to Matrices 18 23 Vector Spaces 34 24 Definition of Tensors 40 ⋅ 2.5 The Symmetric Eigenproblem Av = Av 51 2.6 The Rayleigh Quotient and the Minimax Characterization of Eigenvalues 60 2.7 Vector and Matrix Norms 66 2.8 Exercises 72 CHAPTER TRHEE Some Basic Concepts of Engineering Analysis and an Introduction 77 to the Finite Element Method 77 3.1 Introduction 77 3.2 Solution of Discrete-System Mathematical Models 78 3.2.1 Steady-State Problems, 78 3.2.2 Propagation Problems, 87 3.2.3 FEigenvalue Problems, 90 3.2.4 On the Nature of Solutions, 96 3.2.5 Exercises, 101 33 Solution of Continuous-System Mathematical Models 105 3.3.1 Differential Formulation, 105 3.3.2 Variational Formulations, 110 3.3.3 Weighted Residual Methods; Ritz Method, 116 3.3.4 An Overview: The Differential and Galerkin Formulations, the Principle of Virtual Displacements, and an Introduction to the Finite Element Solution, 124 3.3.5 Finite Difference Differential and Energy Methods, 129 3.3.6 Exercises, 138 3.4 Imposition of Constraints 143 3.4.1 An Introduction to Lagrange Multiplier and Penalty Methods, 143 3.4.2 Exercises, 146 CHAPTER FOUR Formulation of the Finite Element Method—Linear Analysis in Solid and Structural Mechanics 148 4.1 Introduction 148 4.2 Formulation of the Displacement-Based Finite Element Method 149 4.2.1 General Derivation of Finite Element Equilibrium Equations, 153 4.2.2 Imposition of Displacement Boundary Conditions, 187 4.2.3 Generalized Coordinate Models for Specific Problems, 193 4.2.4 Lumping of Structure Properties and Loads, 212 4.2.5 Exercises, 214 4.3 Convergence of Analysis Results 225 4.3.1 The Model Problem and a Definition of Convergence, 225 4.3.2 Criteria for Monotonic Convergence, 229 4.3.3 The Monotonically Convergent Finite Element Solution: A Ritz Solution, 234 4.3.4 Properties of the Finite Element Solution, 236 4.3.5 Rate of Convergence, 244 4.3.6 Calculation of Stresses and the Assessment of Error, 254 4.3.7 Exercises, 259 4.4 Incompatible and Mixed Finite Element Models 261 4.4.1 Incompatible Displacement-Based Models, 262 4.4.2 Mixed Formulations, 268 4.4.3 Mixed Interpolation— Displacement/Pressure Formulations for Incompressible Analysis, 276 4.4.4 Exercises, 296 4.5 The Inf-Sup Condition for Analysis of Incompressible Media and Structural Problems 300 4.5.1 The Inf-Sup Condition Derived from Convergence Considerations, 301 4.5.2 The Inf-Sup Condition Derived from the Matrix Equations, 312 4.5.3 The Constant (Physical) Pressure Mode, 315 4.5.4 Spurious Pressure Modes—The Case of Total Incompressibility, 316 4.5.5 Spurious Pressure Modes—The Case of Near Incompressibility, 318 4.5.6 The Inf-Sup Test, 322 4.5.7 An Application to Structural Elements: The Isoparametric Beam Elements, 330 4.5.8 Exercises, 335 CHAPTER FIVE Formulation-and Calculation of Isoparametric Finite Element Matrices 338 5.1 Introduction 338 5.2 Isoparametric Derivation of Bar Element Stiffness Matrix 339 53 Formulation of Continuum Elements 341 5.3.1 Quadrilateral Elements, 342 5.3.2 Triangular Elements, 363 5.3.3 Convergence Considerations, 376 5.3.4 Element Matrices in Global Coordinate System, 386 5.3.5 Displacement/Pressure Based Elements for Incompressible Media, 388 5.3.6 Exercises, 389 5.4 Formulation of Structural Elements 397 5.4.1 Beam and Axisymmetric Shell Elements, 399 5.4.2 Plate and General Shell Elements, 420 5.4.3 Exercises, 450 55 Numerical Integration 455 5.5.1 Interpolation Using a Polynomial, 456 5.5.2 The Newton-Cotes Formulas (One-Dimensional Integration), 457 5.5.3 The Gauss Formulas (One-Dimensional Integration), 461 5.5.4 Integrations in Two and Three Dimensions, 464 5.5.5 Appropriate Order of Numerical Integration, 465 5.5.6 Reduced and Selective Integration, 476 5.5.7 Exercises, 478 5.6 Computer Program Implementation of Isoparametric Finite Elements 480 CHAPTER SIX Finite Element Nonlinear Analysis in Solid and Structural Mechanics 485 6.1 Introduction to Nonlinear Analysis 485 6.2 Formulation of the Continuum Mechanics Incremental Equations of Motion 497 6.2.1 The Basic Problem, 498 6.2.2 The Deformation Gradient, Strain, and Stress Tensors, 502 6.2.3 Continuum Mechanics Incremental Total and Updated Lagrangian Formulations, Materially- Nonlinear-Only Analysis, 522 6.2.4 Exercises, 529 6.3 Displacement-Based Isoparametric Continuum Finite Elements 538 6.3.1 Linearization of the Principle of Virtual Work with Respect to Finite Element Variables, 538 6.3.2 General Matrix Equations of Displacement-Based Continuum Elements, 540 6.3.3 Truss and Cable Elements, 543 6.3.4 Two-Dimensional Axisymmetric, Plane Strain, and Plane Stress Elements, 549 6.3.5 Three-Dimensional Solid Elements, 555 6.3.6 Exercises, 557 6.4 Displacement/Pressure Formulations for Large Deformations 561 6.4.1 Total Lagrangian Formulation, 561 6.4.2 Updated Lagrangian Formulation, 565 6.4.3 Exercises, 566 6.5 Structural Elements 568 6.5.1 Beam and Axisymmetric Shell Elements, 568 6.5.2 Plate and General Shell Elements, 575 6.5.3 Exercises, 578 6.6 Use of Constitutive Relations 581 6.6.1 Elastic Material Behavior—Generalization of Hooke’s Law, 583 6.6.2 Rubberlike Material Behavior, 592 6.6.3 Inelastic Material Behavior; Elastoplasticity, Creep, and Viscoplasticity, 595 6.6.4 Large Strain Elastoplasticity, 612 6.6.5 Exercises, 617 6.7 Contact Conditions 622 6.7.1 Continuum Mechanics Equations, 622 6.7.2 A Solution Approach for Contact Problems: The Constraint Function Method, 626 6.7.3 Exercises, 628 6.8 Some Practical Considerations 628 6.8.1 The General Approach to Nonlinear Analysis, 629 6.8.2 Collapse and Buckling Analyses, 630 6.8.3 The Effects of Element Distortions, 636 6.8.4 The Effects of Order of Numerical Integration, 637 6.8.5 Exercises, 640 CHAPTER SEVEN Finite Element Analysis of Heat Transfer, Field Problems, and Incompressible Fluid Flows 642 7.1 Introduction 642 7.2 Heat Transfer Analysis 642 7.2.1 Governing Heat Transfer Equations, 642 7.2.2 Incremental Equations, 646 7.2.3 Finite Element Discretization of Heat Transfer Equations, 651 7.2.4 Exercises, 659 7.3 Analysis of Field Problems 661 7.3.1 Seepage, 662 7.3.2 Incompressible Inviscid Flow, 663 7.3.3 Torsion, 664 7.3.4 Acoustic Fluid, 666 7.3.5 Exercises, 670 1.4 Analysis of Viscous Incompressible Fluid Flows 671 7.4.1 Continuum Mechanics Equations, 675 7.4.2 Finite Element Governing Equations, 677 7.4.3 High Reynolds and High Peclet Number Flows, 682 7.4.4 Exercises, 691 CHAPTER EIGHT Solution of Equilibrium Equations in Static Analysis 695 8.1 Introduction 695 8.2 Direct Solutions Using Algorithms Based on Gauss Elimination 696 8.2.1 Introduction to Gauss Elimination, 697 8.2.2 The LDLT Solution, 705 8.2.3 Computer Implementation of Gauss Elimination—The Active Column Solution, 708 8.2.4 Cholesky Factorization, Static Condensation, Substructures, and Frontal Solution, 717 8.2.5 Positive Definiteness, Positive Semidefiniteness, and the Sturm Sequence Property, 726 8.2.6 Solution Errors, 734 8.2.7 Exercises, 741 83 Iterative Solution Methods 745 8.3.1 The Gauss-Seidel Method, 747 8.3.2 Conjugate Gradient Method with Preconditioning, 749 8.3.3 Exercises, 752 8.4 Solution of Nonlinear Equations 754 8.4.1 Newton-Raphson Schemes, 755 8.4.2 The BFGS Method, 759 8.4.3 Load-Displacement-Constraint Methods, 761 84.4 Convergence Criteria, 764 8.4.5 Exercises, 765 CHAPTER NINE Solution of Equilibrium Equations in Dynamic Analysis 768 9.1 Introduction 768 9.2 Direct Integration Methods 769 9.2.1 The Central Difference Method, 770 9.2.2 The Houbolt Method, 774 9.2.3 The Wilson 0 Method, 777 9.2.4 The Newmark Method, 780 9.2.5 The Coupling of Different Integration Operators, 782 9.2.6 Exercises, 784 9.3 Mode Superposition 785 9.3.1 Change of Basis to Modal Generalized Displacements, 785 9.3.2 Analysis with Damping Neglected, 789 9.3.3 Analysis with Damping Included, 796 9.3.4 Exercises, 801 9.4 Analysis of Direct Integration Methods 801 9.4.1 Direct Integration Approximation and Load Operators, 803 9.4.2 Stability Analysis, 806 9.4.3 Accuracy Analysis, 810 9.4.4 Some Practical Considerations, 813 9.4.5 Exercises, 822 9.5 Solution of Nonlinear Equations in Dynamic Analysis 824 9.5.1 Explicit Integration, 824 9.5.2 Implicit Integration, 826 9.5.3 Solution Using Mode Superposition, 828 9.5.4 Exercises, 829 9.6 Solution of Nonstructural Problems; Heat Transfer and Fluid Flows 830 9.6.I The a-Method of Time Integration, 830 9.6.2 Exercises, 836 CHAPTER TEN Preliminaries to the Solution of Eigenproblems 838 10.1 Introduction 838 10.2 Fundamental Facts Used in the Solution of Eigensystems 840 10.2.1 Properties of the Eigenvectors, 841 10.2.2 The Characteristic Polynomials of the Eigenproblem K& = AMd and of Its Associated Constraint Problems, 845 10.2.3 Shifting, 851 10.2.4 Effect of Zero Mass, 852 10.2.5 Transformation of the Generalized Eigenproblem Kb = AMd 1o a Standard Form, 854 10.2.6 Exercises, 860 10.3 Approximate Solution Techniques 861 10.3.1 Static Condensation, 861 10.3.2 Rayleigh-Ritz Analysis, 868 10.3.3 Component Mode Synthesis, 875 10.3.4 Exercises, 879 10.4 Solution Errors 880 . 10.4.1 Error Bounds, 880 10.4.2 Exercises, 886 CHAPTER ELEVEN o —— Solution Methods for Eigenproblems 887 11.1 Introduction 887 11.2 Vector Iteration Methods 889 11.2.1 Inverse Iteration, 890 11.2.2 Forward Iteration, 897 11.2.3 Shifting in Vector Iteration, 899 11.2.4 Rayleigh Quotient Iteration, 904 11.2.5 Matrix Deflation and Gram-Schmidt Orthogonalization, 906 11.2.6 Some Practical Considerations Concerning Vector Iterations, 909 11.2.7 Exercises, 910 11.3 Transformation Methods 911 11.3.1 The Jacobi Method, 912 11.3.2 The Generalized Jacobi Method, 919 11.3.3 The Householder-QR-Inverse Iteration Solution, 927 11.3.4 Exercises, 937 11.4 Polynomial Iterations and Sturm Sequence Techniques - 938 11.4.1 Explicit Polynomial Iteration, 938 11.4.2 Implicit Polynomial Iteration, 939 11.4.3 Iteration Based on the Sturm Sequence Property, 943 11.4.4 Exercises, 945 11.5 The Lanczos Iteration Method 945 11.5.1 The Lanczos Transformation, 946 11.5.2 Iteration with Lanczos Transformations, 950 11.5.3 Ezxercises, 953 11.6 The Subspace Iteration Method 954 11.6.1 Preliminary Considerations, 955 11.6.2 Subspace lteration, 958 11.6.3 Starting Iteration Vectors, 960 11.6.4 Convergence, 963 11.6.5 Implementation of the Subspace Iteration Method, 964 11.6.6 Exercises, 978 CHAPTER TWELVE implementation of the Finite Element Method 979 12.1 Introduction 979 12.2 Computer Program Organization for Calculation of System Matrices 980 12.2.1 Nodal Point and Element Information Read-in, 981 12.2.2 Calculation of Element Stiffness, Mass, and Equivalent Nodal Loads, 983 12.2.3 Assemblage of Matrices, 983 12.3 Calculation of Element Stresses 987 124 Example Program STAP 988 12.4.1 Data Input to Computer Program STAP, 988 12.4.2 Listing of Program STAP, 995 12.5 Exercises and Projects 1009 References 1013 Index 1029