دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Sinan Muftu
سری:
ISBN (شابک) : 012821127X, 9780128211274
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 540
[542]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 Mb
در صورت تبدیل فایل کتاب Finite Element Method: Physics and Solution Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش اجزای محدود: فیزیک و روش حل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روش اجزای محدود: فیزیک و روشهای حل با هدف ارائه درک صحیحی از سیستمهای فیزیکی و روشهای حل برای امکان استفاده مؤثر از روش اجزای محدود به خواننده ارائه میکند.این کتاب بر روی تمرکز دارد. مشکلات کشسانی و انتقال حرارت یک و دو بعدی با مشتقات دقیق معادلات حاکم. ارتباطات بین تکنیکهای تغییر کلاسیک و روش اجزای محدود به دقت توضیح داده شدهاند. پس از فصل پرداختن به روشهای تغییر کلاسیک، روش اجزای محدود به عنوان یک نتیجه طبیعی از این روشها توسعه مییابد که در آن معادله دیفرانسیل جزئی حاکم بر یک زیربخش (عنصر) از حوزه حل تعریف میشود. این کتاب علاوه بر اینکه راهنمای استفاده کامل و مؤثر از روش اجزای محدود است، به عنوان مرجعی در مورد تئوری الاستیسیته، انتقال حرارت و مکانیک تیرها نیز عمل میکند. p>
Finite Element Method: Physics and Solution Methods aims to provide the reader a sound understanding of the physical systems and solution methods to enable effective use of the finite element method.This book focuses on one- and two-dimensional elasticity and heat transfer problems with detailed derivations of the governing equations. The connections between the classical variational techniques and the finite element method are carefully explained. Following the chapter addressing the classical variational methods, the finite element method is developed as a natural outcome of these methods where the governing partial differential equation is defined over a subsegment (element) of the solution domain. As well as being a guide to thorough and effective use of the finite element method, this book also functions asa reference on theory of elasticity, heat transfer, and mechanics of beams.
Front cover Half title Title Copyright Dedication Contents Preface Acknowledgments Chapter 1 Introduction 1.1 Modeling and simulation 1.1.1 Boundary and initial value problems 1.1.2 Boundary value problems 1.2 Solution methods Chapter 2 Mathematical modeling of physical systems 2.1 Introduction 2.2 Governing equations of structural mechanics 2.2.1 External forces, internal forces, and stress 2.2.2 Stress transformations 2.2.3 Deformation and strain 2.2.4 Strain compatibility conditions 2.2.5 Generalized Hooke’s law 2.2.6 Two-dimensional problems 2.2.7 Balance laws 2.2.8 Boundary conditions 2.2.9 Total potential energy of conservative systems 2.3 Mechanics of a flexible beam 2.3.1 Equation of motion of a beam 2.3.2 Kinematics of the Euler-Bernoulli beam 2.3.3 Stresses in an Euler-Bernoulli beam 2.3.4 Kinematics of the Timoshenko beam 2.3.5 Stresses in a Timoshenko beam 2.3.6 Governing equations of the Euler-Bernoulli beam theory 2.3.7 Governing equations of the Timoshenko beam theory 2.4 Heat transfer 2.4.1 Conduction heat transfer 2.4.2 Convection heat transfer 2.4.3 Radiation heat transfer 2.4.4 Heat transfer equation in a one-dimensional solid 2.4.5 Heat transfer in a three-dimensional solid 2.5 Problems References Chapter 3 Integral formulations and variational methods 3.1 Introduction 3.2 Mathematical background 3.2.1 Divergence theorem 3.2.2 Green-Gauss theorem 3.2.3 Integration by parts 3.2.4 Fundamental lemma of calculus of variations 3.2.5 Adjoint and self-adjoint operators 3.3 Calculus of variations 3.3.1 Variation of a functional 3.3.2 Functional derivative 3.3.3 Properties of functionals 3.3.4 Properties of the variational derivative 3.3.5 Euler-Lagrange equations and boundary conditions 3.4 Weighted residual integral and the weak form of boundary value problems 3.4.1 Weighted residual integral 3.4.2 Boundary conditions 3.4.3 The weak form 3.4.4 Relationship between the weak form and functionals 3.5 Method of weighted residuals 3.5.1 Rayleigh-Ritz method 3.5.2 Galerkin method 3.5.3 Polynomials as basis functions for Rayleigh-Ritz and Galerkin methods 3.6 Problems References Chapter 4 Finite element formulation of one-dimensional boundary value problems 4.1 Introduction 4.1.1 Boundary value problem 4.1.2 Spatial Discretization 4.2 A second order, nonconstant coefficient ordinary differential equation over an element 4.2.1 Deflection of a one-dimensional bar 4.2.2 Heat transfer in a one-dimensional domain 4.3 One-dimensional interpolation for finite element method and shape functions 4.3.1 C0 continuous, linear shape functions 4.3.2 C0 continuous, quadratic shape functions 4.3.3 General form of C0 shape functions 4.3.4 One-dimensional, Lagrange interpolation functions 4.4 Equilibrium equations in finite element form 4.4.1 Element stiffness matrix for constant problem parameters 4.4.2 Element stiffness matrix for linearly varying problem parameters a, p, and q 4.5 Recovering specific physics from the general finite element form 4.6 Element assembly 4.7 Boundary conditions 4.7.1 Natural boundary conditions 4.7.2 Essential boundary conditions 4.8 Computer implementation 4.8.1 Main-code 4.8.2 Element connectivity table 4.8.3 Element assembly 4.8.4 Boundary conditions 4.9 Example problem 4.10 Problems Chapter 5 Finite element analysis of planar bars and trusses 5.1 Introduction 5.2 Element equilibrium equation for a planar bar 5.2.1 Problem definition 5.2.2 Weak form of the boundary value problem 5.2.3 Total potential energy of the system 5.2.4 Finite element form of the equilibrium equations of an elastic bar 5.3 Finite element equations for torsion of a bar 5.4 Coordinate transformations 5.4.1 Transformation of unit vectors between orthogonal coordinate systems 5.4.2 Transformation of equilibrium equations for the one-dimensional bar element 5.5 Assembly of elements 5.6 Boundary conditions 5.6.1 Formal definition 5.6.2 Direct assembly of the active degrees of freedom 5.6.3 Numerical implementation of the boundary conditions 5.7 Effects of initial stress or initial strain 5.7.1 Thermal stresses 5.7.2 Initial stresses 5.8 Postprocessing: Computation of stresses and reaction forces 5.8.1 Computation of stresses in members 5.8.2 Reaction forces 5.9 Error and convergence in finite element analysis Problems Reference Chapter 6 Euler-Bernoulli beam element 6.1 Introduction 6.2 C1-Continuous interpolation function 6.3 Element equilibrium equation 6.3.1 Problem definition 6.3.2 Weak form of the boundary value problem 6.3.3 Total potential energy of a beam element 6.3.4 Finite element form of the equilibrium equations of an Euler-Bernoulli beam 6.4 General beam element with membrane and bending capabilities 6.5 Coordinate transformations 6.5.1 Vector transformation between orthogonal coordinate systems in a two-dimensional plane 6.5.2 Transformation of equilibrium equations for the Euler-Bernoulli beam element with axial deformation 6.6 Assembly, boundary conditions, and reaction forces 6.7 Postprocessing and computation of stresses in members Example 6.1 Problems Reference Chapter 7 Isoparametric elements for two-dimensional elastic solids 7.1 Introduction 7.2 Solution domain and its boundary 7.2.1 Outward unit normal and tangent vectors along the boundary 7.3 Equations of equilibrium for two-dimensional elastic solids 7.4 General finite element form of equilibrium equations for a two-dimensional element 7.4.1 Variational form of the equation of equilibrium 7.4.2 Finite element form of the equation of equilibrium 7.5 Interpolation across a two-dimensional domain 7.5.1 Two-dimensional polynomials 7.5.2 Two-dimensional shape functions 7.6 Mapping between general quadrilateral and rectangular domains 7.6.1 Jacobian matrix and Jacobian determinant 7.6.2 Differential area in curvilinear coordinates 7.7 Mapped isoparametric elements 7.7.1 Strain-displacement operator matrix, [B] 7.7.2 Finite element form of the element equilibrium equations for a Q4-element 7.8 Numerical integration using Gauss quadrature 7.8.1 Coordinate transformation 7.8.2 Derivation of second-order Gauss quadrature 7.8.3 Integration of two-dimensional functions by Gauss quadrature 7.9 Numerical evaluation of the element equilibrium equations 7.10 Global equilibrium equations and boundary conditions 7.10.1 Assembly of global equilibrium equation 7.10.2 General treatment of the boundary conditions 7.10.3 Numerical implementation of the boundary conditions 7.11 Postprocessing of the solution References Chapter 8 Rectangular and triangular elements for two-dimensional elastic solids 8.1 Introduction 8.1.1 Total potential energy of an element for a two-dimensional elasticity problem 8.1.2 High-level derivation of the element equilibrium equations 8.2 Two-dimensional interpolation functions 8.2.1 Interpolation and shape functions in plane quadrilateral elements 8.2.2 Interpolation and shape functions in plane triangular elements 8.3 Bilinear rectangular element (Q4) 8.3.1 Element stiffness matrix 8.3.2 Consistent nodal force vector 8.4 Constant strain triangle (CST) element 8.5 Element defects 8.5.1 Constant strain triangle element 8.5.2 Bilinear rectangle (Q4) 8.6 Higher order elements 8.6.1 Quadratic triangle (linear strain triangle) 8.6.2 Q8 quadratic rectangle 8.6.3 Q9 quadratic rectangle 8.6.4 Q6 quadratic rectangle 8.7 Assembly, boundary conditions, solution, and postprocessing References Chapter 9 Finite element analysis of one-dimensional heat transfer problems 9.1 Introduction 9.2 One-dimensional heat transfer 9.2.1 Boundary conditions for one-dimensional heat transfer 9.3 Finite element formulation of the one-dimensional, steady state, heat transfer problem 9.3.1 Element equilibrium equations for a generic one-dimensional element 9.3.2 Finite element form with linear interpolation 9.4 Element equilibrium equations: general ordinary differential equation 9.5 Element assembly 9.6 Boundary conditions 9.6.1 Natural boundary conditions 9.6.2 Essential boundary conditions 9.7 Computer implementation Problems Chapter 10 Heat transfer problems in two-dimensions 10.1 Introduction 10.2 Solution domain and its boundary 10.3 The heat equation and its boundary conditions 10.3.1 Boundary conditions for heat transfer in two-dimensional domain 10.4 The weak form of heat transfer equation in two dimensions 10.5 The finite element form of the two-dimensional heat transfer problem 10.5.1 Finite element form with linear, quadrilateral (Q4) element 10.6 Natural boundary conditions 10.6.1 Internal edges 10.6.2 External edges subjected to prescribed heat flux 10.6.3 External edges subjected to convection 10.6.4 External edges subjected to radiation 10.7 Summary of finite element form of the heat equation and natural boundary conditions 10.8 Numerical integration of element equilibrium equations 10.9 Element assembly 10.10 Imposing the Essential boundary conditions 10.10.1 Symbolic representation of essential boundary conditions 10.10.2 Numerical implementation of essential boundary conditions Problems Reference Chapter 11 Transient thermal analysis 11.1 Introduction 11.2 Transient heat transfer equation 11.2.1 Boundary/initial value problem 11.2.2 Element equilibrium equation of one-dimensional, transient heat transfer 11.2.3 Global equilibrium equation of one-dimensional, transient heat transfer 11.2.4 Global boundary conditions 11.3 Finite difference approximations to derivatives 11.3.1 Temporal discretization of a continuous function 11.3.2 Taylor series expansion 11.3.3 Approximations to the first derivative of a function 11.4 Direct time integration of the heat transfer equation 11.4.1 Forward difference or Euler method 11.4.2 Backward difference method 11.4.3 Central difference or Crank-Nicholson method 11.4.4 Generalized trapezoidal method 11.5 Solution algorithm 11.5.1 Explicit and implicit time integration methods 11.6 Convergence, stability, and accuracy of time integration methods 11.6.1 Modal expansion of the semidiscrete first-order equation 11.6.2 Stability of the semidiscretized first-order equation 11.6.3 Modal expansion of the generalized trapezoidal algorithm 11.6.4 Stability of the generalized trapezoidal algorithm 11.6.5 Fourier-von Neumann stability analysis of the generalized trapezoidal method 11.6.6 Consistency and rate of convergence References Chapter 12 Transient analysis of solids and structures 12.1 Introduction 12.2 Vibration of single degree of freedom systems 12.2.1 Free vibrations: complementary solution 12.2.2 Response to harmonic excitations: particular solution 12.2.3 Combined response: complimentary and particular solutions 12.2.4 Transient vibration 12.3 Initial/boundary value problems for deformable solids 12.3.1 Two-dimensional deformable solid 12.3.2 One-dimensional bar 12.3.3 Euler-Bernoulli beam 12.4 Vibration response of an Euler-Bernoulli beam 12.4.1 Eigenvalue problem 12.4.2 Free vibration problem 12.5 Semidiscrete equations of motion 12.5.1 Two-dimensional deformable element 12.5.2 One-dimensional elastic bar element 12.5.3 Euler-Bernoulli beam element 12.6 Mass matrix 12.6.1 Consistent mass matrices 12.6.2 Lumped mass matrix 12.7 Damping matrix 12.8 Global equation of motion 12.9 Analytical analysis of vibration of semidiscrete systems 12.9.1 Eigenvalue problem for the semidiscrete equation of motion 12.9.2 Orthogonality of the eigenvectors 12.9.3 Response to initial excitations by modal analysis 12.10 Direct time integration of the equation of motion of a solid 12.10.1 Central finite difference approximations: explicit time integration 12.10.2 Linear and average acceleration methods: implicit time integration 12.10.3 Newmark’s method for direct time integration 12.10.4 α-Method for direct time integration 12.10.5 Initial conditions 12.10.6 Solution algorithm 12.11 Convergence, stability, and accuracy of time integration methods 12.11.1 Stability of the explicit method 12.11.2 Stability and consistency of the Newmark and -methods Problems References Appendix A A.1 Arithmetic A.1.1 Arithmetic operators A.2 Mathematical functions A.3 Matrices A.3.1 Subscripting and colon notation A.3.2 Matrix and array operations A.4 Relational operators and flow control A.5 Scripts and functions A.5.1 Script m-files A.5.2 Function m-files A.6 Reading and saving files A.6.1 Reading an input file A.6.2 Saving an output file by using a formatted statement A.7 Plotting A.7.1 Plot function References Appendix B B.1 Structure of a finite element code B.2 Finite element program for solution of second-order ODEs B.2.1 Example B.2.2 MATLAB-based ODE solver B.3 Finite element program for a two-dimensional frame B.3.1 Data input into the finite element program frame2D B.3.2 Example B.3.3 MATLAB-based FEA code: Frame2D Appendix C C.1 GUI-based analysis C.2 APDL-based analysis References Appendix D D.1 Example: simply supported beam D.1.1 GUI-based solution for a simply supported beam under uniform pressure D.1.2 ANSYS APDL macro for BEAM188 D.1.3 ANSYS APDL macro for BEAM4 D.2 Example: suspended bridge D.2.1 GUI-based solution of the suspended bridge problem D.2.2 APDL-based solution of the suspended bridge problem References Appendix E Appendix F F.1 GUI-based solution of the thermomechanical deformation problem F.2 APDL-based solution of the thermomechanical deformation problem Index Back cover