دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Nikiforos T. Laopodis
سری:
ISBN (شابک) : 103207017X, 9781032070179
ناشر: Routledge
سال نشر: 2021
تعداد صفحات: 384
[767]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 37 Mb
در صورت تبدیل فایل کتاب Financial Economics and Econometrics (Routledge Advanced Texts in Economics and Finance) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد مالی و اقتصادسنجی (متن های پیشرفته روتلج در اقتصاد و امور مالی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اقتصاد مالی و اقتصاد سنجی با تأکید بر کاربردها و تفسیر نتایج، مروری بر موضوعات اصلی در امور مالی نظری و تجربی ارائه می دهد. این کتاب در پنج بخش ساختار یافته است، داده های مالی و مدل های تک متغیره را پوشش می دهد. بازده دارایی؛ نرخ بهره، بازده و اسپرد؛ نوسانات و همبستگی؛ و امور مالی شرکت و سیاست. هر فصل با یک نظریه در اقتصاد مالی شروع می شود و به دنبال آن روش های اقتصاد سنجی که برای بررسی این نظریه استفاده شده است، می باشد. در مرحله بعد، این فصل شواهد تجربی را ارائه میکند و در مورد مقالههای اساسی درباره موضوع بحث میکند. جعبهها بینشهایی را در مورد اینکه چگونه یک ایده میتواند در رشتههای دیگر مانند مدیریت، بازاریابی و پزشکی اعمال شود، ارائه میدهد و ارتباط مطالب را فراتر از امور مالی نشان میدهد. خوانندگان با نمونه های کار شده و توضیحات شهودی فراوان در سراسر کتاب پشتیبانی می شوند، در حالی که نکات کلیدی، ویژگی های \\\'دانش خود را آزمایش کنید\\\' و \\\'شهود خود را آزمایش کنید\\\' در پایان هر فصل به یادگیری دانش آموزان نیز کمک می کند. مکملهای دیجیتالی شامل اسلایدهای پاورپوینت، مکملهای کدهای کامپیوتری، کتابچه راهنمای مربی و راهحلها برای مدرسان در دسترس هستند. این کتاب درسی برای دوره های کارشناسی ارشد و کارشناسی ارشد در زمینه اقتصاد مالی، اقتصاد سنجی مالی، مالی تجربی و حوزه های کمی مرتبط مناسب است.
Financial Economics and Econometrics provides an overview of the core topics in theoretical and empirical finance, with an emphasis on applications and interpreting results. Structured in five parts, the book covers financial data and univariate models; asset returns; interest rates, yields and spreads; volatility and correlation; and corporate finance and policy. Each chapter begins with a theory in financial economics, followed by econometric methodologies which have been used to explore the theory. Next, the chapter presents empirical evidence and discusses seminal papers on the topic. Boxes offer insights on how an idea can be applied to other disciplines such as management, marketing and medicine, showing the relevance of the material beyond finance. Readers are supported with plenty of worked examples and intuitive explanations throughout the book, while key takeaways, \'test your knowledge\' and \'test your intuition\' features at the end of each chapter also aid student learning. Digital supplements including PowerPoint slides, computer codes supplements, an Instructor\'s Manual and Solutions Manual are available for instructors. This textbook is suitable for upper-level undergraduate and graduate courses on financial economics, financial econometrics, empirical finance and related quantitative areas.
Cover Half Title Series Title Copyright Dedication Contents List of figures List of tables List of boxes Preface Acknowledgments Part I Characteristics of financial data and univariate models 1 Introduction to financial economics and econometrics 1 What is financial economics? 2 What is financial econometrics? 3 What are quantitative finance and financial engineering? 4 Financial economics and econometrics and other disciplines 5 Plan of the book 2 How to write a research paper Introduction 1 Finding a topic 2 Literature review 3 Methodology 4 Data 5 Empirical analysis and discussion 6 Summary and conclusions 7 Finance journals and data sources 8 Putting it all together 3 The characteristics of financial series Introduction 1 Macro vs. financial data 2 Distributional properties of financial series 2.1 Raw vs. transformed series 2.2 Descriptive statistics 2.3 Graphical illustrations 2.4 Some empirical evidence 3 Stylized facts of financial series 3.1 Linear dependencies 3.2 Nonstationarity 3.3 Calendar effects 3.4 Long memory 3.5 Nonlinearities 3.6 Chaos 3.7 Other characteristics 3.7.1 Scaling 3.7.2 Volume 3.7.3 Extreme values Key takeaways Test your knowledge Test your intuition 4 Univariate properties of financial time series 1 Introduction 2 Nonstationarity 2.1 Nonstationary models 3 Stationarity and processes 3.1 Making a series stationary Differencing Curve fitting 3.2 Autoregressive model 3.2.1 Autocorrelation function 3.2.2 Partial autocorrelation function 3.3 Moving average model 3.4 ARMA model 3.4.1 Causality in ARMA(p,q) 3.5 Building AR, MA and AR(I)MA models 3.6 The Box–Jenkins approach 3.6.1 Model identification Graphical approach 3.6.2 Econometric approach 3.6.3 Model estimation 3.6.4 Model validation 3.6.5 Forecasting 3.6.6 Some comments on ARMA specifications An example 3.6.7 Overview of modeling and forecasting time series 4 Some empirical evidence Key takeaways Test your knowledge Test your intuition 5 Short and long-run relationships among time series 1 Introduction 2 Shortterm relationships 2.1 Covariance and correlation 2.2 Causality 2.2.1 Granger causality 2.2.2 Application 2.2.3 Early evidence on causality among stock prices and macro variables 3 Unit roots 3.1 Motivation 3.2 Dickey–Fuller unit root tests 3.3 PhillipsPerron unit root test 3.4 Kwiatkowski, Phillips, Schmidt and Shin unit root test 3.5 Ng and Perron unit root test 3.6 On the inclusions of a constant and/or a trend 3.7 An example 3.8 Unit root testing under structural breaks 3.8.1 Some issues 3.8.2 Some examples 3.9 Empirical evidence 4 Cointegration 4.1 Motivation 4.2 Cointegration tests 4.2.1 The Engle and Granger cointegration approach 4.2.2 Some examples of cointegration and economic equilibrium Stock prices and dividends Purchasing power parity Consumption, income and wealth Money demand Relationships among interest rates 4.2.3 The residualsbased cointegration approach 4.2.3 The Phillips–Ouliaris cointegration test 4.2.4 The Durbin–Watson cointegrating statistic test 4.2.5 Autoregressive distributed lag (ADL) model An example 4.2.6 The Johansen approach 4.2.7 Rollingsample cointegration 4.2.8 A trivariate VECM 4.2.9 An example 4.2.10 Advances in cointegration 5 Cross (auto)correlations 5.1 Definition 5.2 Motivation 5.3 Implementation and interpretation 5.3.1 An example 5.4 Some empirical evidence Key takeaways Test your knowledge Test your intuition Part II Asset returns 6 The efficient market hypothesis and tests Introduction 1 The efficient market hypothesis (EMH) 1.1 Preliminaries 1.2 Forms of market efficiency 1.3 Tests of market efficiency 1.3.1 Nonparametric tests Run(s) test Unit root tests 1.3.2 Parametric tests Variance ratio tests Serial correlation tests 2 Other tests of market efficiency 2.1 Preliminaries 2.2 Event study methodology 2.2.1 Abnormal returns Cumulative abnormal returns Buy-and-hold abnormal returns Jensen’s alpha 2.2.2 Complications On computing expected and normal returns On setting the statistical hypotheses Other potential issues 2.2.3 Event study design 3 Other models for testing the EMH 3.1 Univariate models 3.2 Multivariate models 3.3 Other models 4 Selected empirical evidence 4.1 Shortterm patterns in stock returns 4.2 Longterm patterns in stock returns 4.3 Market anomalies 5 Where do we stand now on EMH? Key takeaways Test your knowledge Test your intuition 7 The capital asset pricing model and its variants Introduction 1 Theoretical motivation 1.1 Risk aversion, portfolio risk and diversification 1.2 Meanvariance model in brief 1.3 Assumptions of CAPM 1.4 Derivation of CAPM 1.5 The security market line 1.6 The zerobeta model 1.7 Some issues with CAPM 2 Econometric methodologies 2.1 The simple linear regression model 2.2 CAPM specifications 2.2.1 Timeseries specifications The Single Factor Model 2.2.2 Crosssection regression specifications The Black, Jensen and Scholes approach The Fama–MacBeth methodology M-CAPM vs. B-CAPM vs. SL-CAP The Fama–French methodologies 2.2.3 The generalized method of moments approach 2.3 Empirical evidence on CAPM 2.3.1 Roll’s critique 3 Some extensions/variants of CAPM 3.1 Merton’s intertemporal CAPM 3.2 The consumption CAPM 3.3 The XCAPM 3.4 The liquidity CAPM 3.5 The international CAPM 3.6 The HCAPM 4 The equity premium puzzle 4.1 The problem 4.2 Explaining the puzzle Key takeaways Test your knowledge Test your intuition 8 Multifactor models and the Arbitrage Pricing Theory Introduction 1 Categories of factor models 1.1 Macroeconomic factor models 1.2 Fundamental factor models 1.3 Statistical factor models 2 Factorconstruction methodologies 2.1 Autoregressive process 2.2 Moving average process 2.3 ARMA process 2.4 Timeseries regression methodology 2.5 Crosssection regression methodology 2.6 Factor and principal components analyses 2.6.1 Factor analysis 2.5.2 Principal component analysis 3 Determining the number of factors 3.1 Some empirical evidence 4 The Arbitrage Pricing Theory 4.1 Assumptions 4.2 Differences between APT and CAPM 4.3 The specification 4.4 Factor sensitivities 4.5 What are the common or systematic factors? 4.6 Empirical tests and applications of APT 4.7 Empirical analyses of APT Timeseries regressions 4.8 International APT 4.9 Some notable APT applications Chen, Roll and Ross Chan, Chen and Hsieh Some comments on the CRR and CCH papers Flannery and Protopapadakis 5 Important multifactor models 5.1 The Fama and French threefactor model 5.2 The expanded FF threefactor model 5.3 The FF fivefactor model 5.4 The Carhart fourfactor model 6 Other multifactor models 6.1 The PástorStambaugh model 6.2 The Burmeister, Roll and Ross model 6.3 The FungHsieh factor models 6.4 The Hou, Xue and Zhang qfactor model 7 Some econometric issues and methodologies 7.1 Heteroscedasticity 7.1.1 The White test 7.1.2 The Goldfeld–Quandt test 7.1.3 The generalized least squares approach 7.2 Serial correlation 7.2.1 The Cochrane–Orcutt approach 7.3 Quantile regression 7.4 Rolling regression 8 Some final comments on multifactor models Key takeaways Test your knowledge Test your intuition Part III Interest rates, yields and spreads 9 The risks and the term structure of interest rates Introduction 1 Interestrate determination 1.1 The loanable funds theory 1.2 The liquidity preference theory 2 US Treasury bills and inflation 3 Money and capital market rates 3.1 Money market rates 3.2 Capital market rates 4 The risk structure of interest rates 5 The term structure of interest rates 5.1 The yield curve 5.1.1 Spot and forward rates 5.1.2 Slopes of the yield curve 5.2 Swap rate yield curve 5.3 Theories of the term structure of interest rates 5.3.1 The expectations theory 5.3.2 The liquidity preference theory 5.3.3 The preferred habitat theory 5.3.4 The market segmentation theory 5.4 Practical importance of the yield curve 6 Some empirical evidence on the term structure 7 Interest rate models 7.1 Some basic concepts 7.2 Singlefactor, short interest rate models 7.2.1 The Vasicek (1977) models 7.2.2 The Rendleman–Bartter (1980) model 7.2.3 The Hull and White (1987, 1990) model 7.2.4 The Cox–Ingersoll–Ross (1985) model 7.2.5 The Ho and Lee (1986) model 7.2.6 The Dothan (1978) model 7.2.7 The Black–Derman–Toy (1990) model 7.2.8 The Black and Karasinski (1991) model 7.2.9 The Heath et al. (1992) model 7.2.10 The Kalotay–Williams–Fabozzi (1993) model 7.2.11 The Squared Gaussian Model 7.3 Evaluation of onefactor, short rate models 7.4 Multifactor interest rate models 7.4.1 The Brennan and Schwartz (1979) model 7.4.2 The Richard (1978) model 7.4.3 The Longstaff and Schwartz (1992) model 7.4.4 The Chen (1996a,b) model 7.5 The LIBOR market-rate model 8 Some empirical evidence Key takeaways Test your knowledge Test your intuition 10 Yields, spreads and exchange rates Introduction 1 Bond yields and spreads 1.1 Bond prices and yields 1.2 Bond yield spreads 1.3 Some spreads and their meaning 2 The economic significance of yield spreads 2.1 Yield spreads and economic magnitudes 2.2 Spreads and risk components 3 Econometric modeling 3.1 Logit model 3.2 Probit model 3.2.1 Interpretation and application 3.3 Multinomial models 3.4 Cointegration among spreads 4 Exchange rates 4.1 Some important laws 4.1.1 The law of one price 4.1.2 The theory of purchasing power parity 4.1.3 Demand and supply analysis 4.1.4 The interest rate parity theorem 4.1.5 The covered interest rate parity 4.1.6 The uncovered interest rate parity 4.1.7 The forward rate unbiasedness condition 4.1.8 The real interest rate parity 4.2 Some empirical evidence 4.3 The forward premium puzzle 5 Some econometric methodologies 5.1 Simultaneous equations 5.2 The indirect least squares method 5.2.1 The identification issue 5.3 The 2stage least squares approach 5.4 The instrumental variables approach 5.5 VAR/VEC models An illustration Key takeaways Test your knowledge Test your intuition Part IV Volatility and correlation 11 Volatility modeling and forecasting 1 Introduction 2 Volatility and returns 2.1 Empirical regularities of volatility 2.2 Sources of volatility and stock returns 2.3 Implied vs. realized volatility 3 Volatility models 3.1 ARCH model 3.2 GARCH model An illustration of ARCH and GARCH models 3.3 (G)ARCHM 3.4 Exponential GARCH 3.5 The Glosten et al. (1993) model 3.6 Threshold (G)ARCH 3.7 Asymmetric Power ARCH 3.8 Other GARCHtype models Some illustrations using the aforementioned models 3.9 Tests for asymmetries 3.10 News impact curves 3.11 Model building 4 Forecasting volatility 4.1 Exponential smoothing 4.2 Exponentially weighted moving average 4.3 GARCHtype models 4.4 Some empirical evidence 5 Other variants of GARCH models 6 Stochastic volatility 7 Realized variance 8 Volatility as an asset class Key takeaways Test your knowledge Test your intuition 12 Correlation modeling 1 Introduction 2 Covariance and correlation 2.1 Covariances and correlations A portfolio example An example of CAPM beta A hedge ratio example 2.2 Some general discussion on correlation and covariance 2.3 Simple covariance models 2.3.1 Implied covariance and correlation model 2.3.2 Exponentially weighted moving average covariance model 2.3.3 GARCHcovariance model 2.4 Contagion and interdependence (spillovers) 2.4.1 Theories of contagion and spillovers 2.4.2 A simple model to measure contagion and spillovers 3 Multivariate GARCH models 3.1 VECH models 3.2 The BEKK model 3.3 Factor GARCH models 3.4 The constant conditional correlation GARCH model 3.5 The dynamic conditional-correlation GARCH model 3.6 Dynamic equicorrelation model 3.7 Asymmetric MGARCH 3.8 The copulaMGARCH model Applications of some MGARCH models 4 Regimeswitching models 4.1 Markovswitching models 4.2 Markovswitching (G)ARCH models 4.3 Some financial applications Key takeaways Test your knowledge Test your intuition Part V Topics in financial management 13 Capital structure and dividend decisions 1 Introduction 2 Theories of capital structure 2.1 The tradeoff theory 2.1.1 Costs of bankruptcy 2.2 The pecking order theory 2.3 The freecash flow theory 2.4 Other theories of capital structure 3 Methodologies used in capital structure 3.1 Linear, multiple discriminant analysis 3.1.1 Altman’s Zscore models 3.2 Categoricalvariable models 3.2.1 Censored and truncated variables 3.3 Panel analysis 3.3.1 The fixedeffects model 3.3.2 The randomeffects model 3.4 Econometric issues 4 Empirical evidence on capital structure and additional insights 4.1 Empirical evidence on capital structure theories 4.2 Additional research on capital structure 5 Dividend policies and theories 5.1 The Modigliani and Miller dividend irrelevance proposition 5.2 The information content of dividends 5.2.1 The signaling theory 5.3 The clientele effect theory 5.4 The tax effect theory 5.5 The transactions costinduced effect 5.6 The birdin-thehand theory 5.7 The agency cost or the freecash flow hypothesis 5.8 The residual dividend theory 5.9 The firm lifecycle theory of dividend payout 5.10 The dividendsmoothing theory 6 Empirical evidence on dividend theories 6.1 Empirical tests of dividend theories 6.2 Other tests of dividend policies literature 6.3 A brief recap of dividend theories and empirical evidence Key takeaways Test your knowledge Test your intuition 14 Mergers, acquisitions and corporate restructurings 1 Introduction 2 Mergers, acquisitions and restructurings 2.1 Motives for mergers 2.1.1 Economies of scale, scope and integration 2.1.2 Achieving efficiencies 2.1.3 Tax advantages 2.1.4 Other motives 2.2 Acquisitions 2.2.1 Gains from an acquisition 2.3 Corporate restructuring 2.3.1 Reasons for corporate restructuring Divestitures Spin-offs Equity carve-outs Split-offs Liquidation Privatization 2.3.2 The distressed exchange restructuring theory 3 Econometric methodologies in M&A investigations 3.1 Conditional logit 3.2 Survival analysis 4 Empirical evidence on mergers and acquisitions 4.1 Announcement event studies 4.2 Pre and postmerger firm performance 4.3 Impact of a merger or acquisition on financial performance 4.4 Market valuation and merger activity 4.5 Selected international evidence on mergers and acquisitions 5 Studies using conditional logit, tobit and survival analysis 5.1 Studies having used the conditional logit 5.2 Studies having used the Tobit model 5.3 Studies having used survival analysis 6 Empirical evidence on corporate restructuring Key takeaways Test your knowledge Test Your intuition 15 Contemporary topics in financial economics 1 Introduction 2 Market microstructure 2.1 Price discovery and formation 2.2 Market structure and design 2.3 Market transparency 2.4 Trader anonymity 2.5 Highfrequency trading 2.5.1 Traditional marketmaking vs. HFT market-making 2.5.2 HFT strategies 3 Empirical evidence on market microstructure and highfrequency trading 3.1 Selected research on market microstructure 3.2 Selected empirical evidence on highfrequency trading 4 Econometric methodologies 4.1 The statespace model 4.2 The autoregressive conditional duration model 4.3 The differencesindifferences specification An application 4.4 CoVaR 5 Cryptocurrencies 5.1 Some statistical characteristics of cryptocurrencies 5.2 Cryptos as an asset class and linkages with other financial assets 5.3 Other attributes of cryptocurrencies 6 Financial technology 6.1 Fintech and banking 6.2 Research on fintech 6.3 The future of fintech Key takeaways Test your knowledge Test your intuition Index