دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019 نویسندگان: Cheng-Few Lee, Hong-Yi Chen, John Lee سری: ISBN (شابک) : 1493994271, 9781493994274 ناشر: Springer سال نشر: 2019 تعداد صفحات: 657 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Financial Econometrics, Mathematics and Statistics: Theory, Method and Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصاد سنجی مالی، ریاضیات و آمار: نظریه، روش و کاربرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی دقیق دانشجویان تحصیلات تکمیلی را با اصول اقتصاد سنجی و آمار با تمرکز بر روش ها و کاربردها در تحقیقات مالی آشنا می کند. اقتصادسنجی مالی، ریاضیات و آمار ابزارها و روشهایی را معرفی میکند که هم برای امور مالی و هم حسابداری مهم هستند که به قیمتگذاری دارایی، امور مالی شرکت، گزینهها و معاملات آتی و انجام تحقیقات حسابداری مالی کمک میکنند.
این متن به چهار بخش تقسیم شده است و با موضوعات مرتبط با رگرسیون و اقتصاد سنجی مالی آغاز می شود. بخشهای بعدی تحلیلهای سری زمانی را توصیف میکنند. نقش توزیعهای نرمال دوجملهای، چندجملهای و ورود به سیستم در مدلهای قیمتگذاری گزینه. و استفاده از تحلیل های آماری در مدیریت ریسک. کاربردها و مشکلات دنیای واقعی بینش منحصر به فردی را در مورد موضوعاتی مانند ناهمسانی، رگرسیون، مدلهای معادله همزمان، تحلیل دادههای تابلویی، تحلیل سریهای زمانی و روش تعمیم لحظهها به دانشآموزان ارائه میدهد.
نوشته شده توسط دانشگاهیان برجسته در زمینه مالی کمی، به خوانندگان اجازه میدهد تا اصول اقتصاد سنجی مالی و آمار را از طریق برنامههای کاربردی و مجموعههای مشکل در دنیای واقعی پیادهسازی کنند. این کتاب درسی برای بازار کمتری از دانشجویان مقاطع کارشناسی و کارشناسی ارشد در رشته های مالی، اقتصاد و آمار جذاب خواهد بود.
This rigorous textbook introduces graduate students to the principles of econometrics and statistics with a focus on methods and applications in financial research. Financial Econometrics, Mathematics, and Statistics introduces tools and methods important for both finance and accounting that assist with asset pricing, corporate finance, options and futures, and conducting financial accounting research.
Divided into four parts, the text begins with topics related to regression and financial econometrics. Subsequent sections describe time-series analyses; the role of binomial, multi-nomial, and log normal distributions in option pricing models; and the application of statistics analyses to risk management. The real-world applications and problems offer students a unique insight into such topics as heteroskedasticity, regression, simultaneous equation models, panel data analysis, time series analysis, and generalized method of moments.
Written by leading academics in the quantitative finance field, allows readers to implement the principles behind financial econometrics and statistics through real-world applications and problem sets. This textbook will appeal to a less-served market of upper-undergraduate and graduate students in finance, economics, and statistics.
Preface Contents 1 Introduction to Financial Econometrics, Mathematics, and Statistics Abstract 1.1 Introduction 1.2 Regression and Financial Econometrics 1.2.1 Single-Equation Regression Methods 1.2.2 Simultaneous Equation Models 1.2.3 Panel Data Analysis 1.2.4 Alternative Methods to Deal with Measurement Error 1.2.5 Time-Series Analysis 1.3 Financial Statistics 1.3.1 Statistical Distributions 1.3.2 Principle Components and Factor Analysis 1.3.3 Nonparametric and Semiparametric Analyses 1.3.4 Cluster Analysis 1.4 Applications of Financial Econometrics, Mathematics and Statistics 1.4.1 Asset Pricing 1.4.2 Corporate Finance 1.4.3 Financial Institution 1.4.4 Investment and Portfolio Management 1.4.5 Option Pricing Model 1.4.6 Futures and Hedging 1.4.7 Mutual Fund 1.4.8 Credit Risk Modeling 1.4.9 Other Applications 1.5 Overall Discussion of This Book 1.5.1 Regression and Financial Econometrics 1.5.2 Time-Series Analysis and Its Application 1.5.3 Statistical Distributions and Option Pricing Model 1.5.4 Statistics, Itô’s Calculus and Option Pricing Model 1.6 Conclusion Appendix: Keywords for Chaps. 2–24 Bibliography Regression and Financial Econometrics 2 Multiple Linear Regression Abstract 2.1 Introduction 2.2 The Model and Its Assumptions 2.3 Estimating Multiple Regression Parameters 2.4 The Residual Standard Error and the Coefficient of Determination 2.5 Tests on Sets and Individual Regression Coefficients 2.6 Confidence Interval for the Mean Response and Prediction Interval for the Individual Response 2.7 Business and Economic Applications 2.8 Using Computer Programs to Do Multiple Regression Analyses 2.8.1 SAS Program for Multiple Regression Analysis 2.9 Conclusion Appendix 1: Derivation of the Sampling Variance of the Least Squares Slope Estimations Appendix 2: Cross-sectional Relationship Among Price Per Share, Dividend Per Share, and Return Earning Per Share Bibliography 3 Other Topics in Applied Regression Analysis Abstract 3.1 Introduction 3.2 Multicollinearity 3.3 Heteroscedasticity 3.4 Autocorrelation 3.5 Model Specification and Specification Bias 3.6 Nonlinear Models 3.7 Lagged Dependent Variables 3.8 Dummy Variables 3.9 Regression with Interaction Variables 3.10 Regression Approach to Investigating the Effect of Alternative Business Strategies 3.11 Logistic Regression and Credit Risk Analysis: Ohlson’s and Shumway’s Methods for Estimating Default Probability 3.12 Conclusion Appendix 1: Dynamic Ratio Analysis Appendix 2: Term Structure of Interest Rate Appendix 3: Partial Adjustment Dividend Behavior Model Behavioral Considerations of Dividend Policy Partial Adjustment and Information Content Models An Integration Model Appendix 4: Logistic Model and Probit Model Appendix 5: SAS Code for Hazard Model in Bankruptcy Forecasting Bibliography 4 Simultaneous Equation Models Abstract 4.1 Introduction 4.2 Discussion of Simultaneous Equation System 4.3 Two-Stage and Three-Stage Least Squares Method 4.3.1 Identification Problem 4.3.2 Two-Stage Least Squares 4.3.3 Three-Stage Least Squares 4.4 Application of Simultaneous Equation in Finance Research 4.5 Conclusion Bibliography 5 Econometric Approach to Financial Analysis, Planning, and Forecasting 5.1 Introduction 5.2 Simultaneous Nature of Financial Analysis, Planning, and Forecasting 5.2.1 Basic Concepts of Simultaneous Econometric Models 5.2.2 Interrelationship of Accounting Information 5.2.3 Interrelationship of Financial Policies 5.3 The Simultaneity and Dynamics of Corporate-Budgeting Decisions 5.3.1 Definitions of Endogenous and Exogenous Variables 5.3.2 Model Specification and Applications 5.4 Applications of SUR Estimation Method in Financial Analysis and Planning 5.4.1 The Role of Firm-Related Variables in Capital Asset Pricing 5.4.2 The Role of Capital Structure in Corporate-Financing Decisions 5.5 Applications of Structural Econometric Models in Financial Analysis and Planning 5.5.1 A Brief Review 5.5.2 AT&T’s Econometric Planning Model 5.6 Programming Versus Simultaneous Versus Econometric Financial Models 5.7 Financial Analysis and Business Policy Decisions 5.8 Conclusion Appendix: Johnson & Johnson as a Case Study Introduction Study of the Company’s Operations Analysis of the Company’s Financial Performance Variables and Time Horizon Model and Empirical Results, Bibliography 6 Fixed Effects Versus Random Effects in Finance Research Abstract 6.1 Introduction 6.2 The Dummy Variable Technique and the Error Component Model 6.3 Impacts of Firm Effect and Time Effect on Stock Price Variation 6.4 Functional Form and Pooled Time-Series and Cross-Sectional Data 6.5 Clustering Effect and Clustered Standard Errors 6.6 Hausman Test for Determining Either Fixed Effects Model or Random Effects Model 6.7 Efficient Firm Fixed Effects Estimator and Efficient Correlated Random Effects Estimator 6.8 Empirical Evidence of Optimal Payout Ratio Under Uncertainty and the Flexibility Hypothesis 6.9 Conclusion Appendix: Optimal Payout Ratio Under Uncertainty and the Flexibility Hypothesis: Theory and Empirical Evidence Hypothesis Development Sample Description Bibliography 7 Alternative Methods to Deal with Measurement Error Abstract 7.1 Introduction 7.2 Effects of Errors-in-Variables in Different Cases 7.2.1 Bivariate Normal Case 7.2.2 Multivariate Case 7.2.2.1 The Classical Case 7.2.2.2 The Constrained Classical Case 7.3 Estimation Methods When Variables Are Subject to Error 7.3.1 Classical Estimation Method 7.3.1.1 The Classical Method to a Simple Regression Analysis 7.3.1.2 The Classical Method to a Multiple Regression Analysis 7.3.1.3 The Constrained Classical Method 7.3.2 Grouping Method 7.3.3 Instrumental Variable Method 7.3.4 Mathematical Method 7.3.4.1 Bivariate Case 7.3.4.2 Multivariate Case 7.3.5 Maximum Likelihood Method 7.3.6 LISREL and MIMIC Methods 7.3.6.1 Structural Model (Lisrel Model) 7.3.6.2 Mimic Model 7.3.7 Bayesian Approach 7.4 Applications of Errors-in-Variables Models in Finance Research 7.4.1 Cost of Capital 7.4.2 Capital Asset Pricing Model 7.4.3 Capital Structure 7.4.4 Measurement Error in Investment Equation 7.5 Conclusion Bibliography 8 Three Alternative Methods in Testing Capital Asset Pricing Model Abstract 8.1 Introduction 8.2 Empirical Test on Capital Asset Pricing Model 8.2.1 Data 8.2.2 Grouping Method for Testing Capital Asset Pricing Model 8.2.3 Instrumental Variable Method for Testing Capital Asset Pricing Model 8.2.4 Applying Instrumental Variable Methods into Grouping Sample 8.2.5 Maximum Likelihood Method for Testing Capital Asset Pricing Model 8.2.6 Asset Pricing Model Tests with Individual Stocks 8.3 Normality Test for Time-Series Estimators and Future Research 8.4 The Investment Horizon of Beta Estimation 8.5 Conclusion Bibliography 9 Spurious Regression and Data Mining in Conditional Asset Pricing Models Abstract 9.1 Introduction 9.2 Model Specification 9.3 Spurious Regression and Data Mining in Predictive Regressions 9.4 Spurious Regression, Data Mining, and Conditional Asset Pricing 9.5 The Data 9.6 The Models 9.6.1 Predictive Regressions 9.6.2 Conditional Asset Pricing Models 9.7 Results for Predictive Regressions 9.7.1 Pure Spurious Regression 9.7.2 Spurious Regression and Data Mining 9.8 Results for Conditional Asset Pricing Models 9.8.1 Cases with Small Amounts of Persistence 9.8.2 Cases with Persistence 9.8.3 Suppressing Time-Varying Alphas 9.8.4 Suppressing Time-Varying Betas 9.8.5 A Cross Section of Asset Returns 9.8.6 Revisiting Previous Evidence 9.9 Solutions to the Problems of Spurious Regression and Data Mining 9.9.1 Solutions in Predictive Regressions 9.9.2 Solutions in Conditional Asset Pricing Models 9.10 Robustness of the Asset Pricing Results 9.10.1 Multiple Instruments 9.10.2 Multiple-Beta Models 9.10.3 Predicting the Market Return 9.10.4 Simulations Under the Alternative Hypothesis 9.11 Conclusion Bibliography Time-Series Analysis and Its Applications 10 Time Series: Analysis, Model, and Forecasting 10.1 Introduction 10.2 The Classical Time-Series Component Model 10.3 Moving Average and Seasonally Adjusted Time Series 10.4 Linear and Log Linear Time Trend Regressions 10.5 Exponential Smoothing and Forecasting 10.6 Autoregressive Forecasting Model 10.7 ARIMA Models 10.8 Autoregressive Conditional Heteroscedasticity 10.8.1 Autoregressive Conditional Heteroscedasticity (ARCH) Models 10.8.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model 10.8.3 The GARCH Universe 10.9 Composite Forecasting 10.9.1 Composite Forecasting of Livestock Prices 10.9.2 Combined Forecasting of the Taiwan Weighted Stock Index 10.10 Conclusion Appendix 1: The Holt–Winters Forecasting Model for Seasonal Series Appendix 2: Composite Forecasting Method Bibliography 11 Hedge Ratio and Time-Series Analysis Abstract 11.1 Introduction 11.2 Alternative Theories for Deriving the Optimal Hedge Ratio 11.2.1 Static Case 11.2.1.1 Minimum-Variance Hedge Ratio 11.2.1.2 Optimum Mean-Variance Hedge Ratio 11.2.1.3 Sharpe Hedge Ratio 11.2.1.4 Maximum Expected Utility Hedge Ratio 11.2.1.5 Minimum Mean Extended-Gini Coefficient Hedge Ratio 11.2.1.6 Optimum Mean-MEG Hedge Ratio 11.2.1.7 Minimum Generalized Semivariance Hedge Ratio 11.2.1.8 Optimum Mean-Generalized Semivariance Hedge Ratio 11.2.1.9 Minimum Value-at-Risk Hedge Ratio 11.2.2 Dynamic Case 11.2.3 Case with Production and Alternative Investment Opportunities 11.3 Alternative Methods for Estimating the Optimal Hedge Ratio 11.3.1 Estimation of the Minimum-Variance (MV) Hedge Ratio 11.3.1.1 OLS Method 11.3.1.2 ARCH and GARCH Methods 11.3.1.3 Regime-Switching GARCH Model 11.3.1.4 Random Coefficient Method 11.3.1.5 Cointegration and Error Correction Method 11.3.2 Estimation of the Optimum Mean-Variance and Sharpe Hedge Ratios 11.3.3 Estimation of the Maximum Expected Utility Hedge Ratio 11.3.4 Estimation of Mean Extended-Gini (MEG) Coefficient-Based Hedge Ratios 11.3.5 Estimation of Generalized Semivariance (GSV) Based Hedge Ratios 11.4 Hedging Horizon, Maturity of Futures Contract, Data Frequency, and Hedging Effectiveness 11.5 Empirical Results of Hedge Ratio Estimation 11.5.1 OLS Method 11.5.2 ARCH GARCH 11.5.3 EGARCH 11.5.4 GJR-GARCH 11.5.5 TGARCH 11.6 Conclusion Appendix 1: Theoretical Models Appendix 2: Empirical Models Appendix 3: Monthly Data of S&P 500 Index and Its Futures Bibliography Statistical Distributions, Option Pricing Model and Risk Management 12 The Binomial, Multinomial Distributions, and Option Pricing Model Abstract 12.1 Introduction 12.2 Binomial Distribution 12.3 The Simple Binomial Option Pricing Model 12.4 The Generalized Binomial Option Pricing Model 12.5 Multinomial Option Pricing Model 12.5.1 Derivation of the Option Pricing Model 12.5.2 The Black and Scholes Model as a Limiting Case 12.6 A Lattice Framework for Option Pricing 12.6.1 Modification of the Two-State Approach for a Single-State Variable 12.6.2 A Lattice Model for Valuation of Options on Two Underlying Assets 12.7 Conclusion Bibliography 13 Two Alternative Binomial Option Pricing Model Approaches to Derive Black–Scholes Option Pricing Model Abstract 13.1 Introduction 13.2 The Two-State Option Pricing Model of Rendleman and Bartter 13.2.1 The Discrete-Time Model 13.2.2 The Continuous Time Model 13.3 The Binomial Option Pricing Model of CRR 13.3.1 The Binomial Option Pricing Formula of CRR 13.3.2 Limiting Case 13.4 Comparison of the Two Approaches 13.5 Conclusion Appendix: The Binomial Theorem Bibliography 14 Normal, Lognormal Distribution, and Option Pricing Model Abstract 14.1 Introduction 14.2 The Normal Distribution 14.3 The Lognormal Distribution 14.4 The Lognormal Distribution and Its Relationship to the Normal Distribution 14.5 Multivariate Normal and Lognormal Distributions 14.6 The Normal Distribution as an Application to the Binomial and Poisson Distributions 14.7 Applications of the Lognormal Distribution in Option Pricing 14.8 The Bivariate Normal Density Function 14.9 American Call Options 14.9.1 Price American Call Options by the Bivariate Normal Distribution 14.9.2 Pricing an American Call Option: An Example 14.10 Price Bounds for Options 14.10.1 Options Written on Nondividend- Paying Stocks 14.10.2 Options Written on Dividend-Paying Stocks 14.11 Conclusion Appendix 1: Microsoft Excel Program for Calculating Cumulative Bivariate Normal Density Function Appendix 2: Microsoft Excel Program for Calculating the American Call Options Bibliography 15 Copula, Correlated Defaults, and Credit VaR Abstract 15.1 Introduction 15.2 Methodology 15.2.1 CreditMetrics 15.2.1.1 Value at Risk Due to Credit 15.2.1.2 Exposures 15.2.1.3 Correlations 15.2.2 Copula Function 15.2.2.1 Copula Function 15.2.2.2 Sklar’s Theorem 15.2.2.3 Copula of F 15.2.3 Factor Copula Model 15.3 Experimental Results 15.3.1 Data 15.3.1.1 Requirements of Data Input 15.3.2 Simulation 15.3.3 Discussion 15.3.3.1 Tool and Interface Preview Basic Information of Experimental Data: (Pie Chart) Information According to Experimental Data: (Statistic Numbers) Set Criteria and Derive Fundamental Experimental Result Report of Overall VaR Contributor 15.3.3.2 Experimental Result and Discussion 15.4 Conclusion Bibliography 16 Multivariate Analysis: Discriminant Analysis and Factor Analysis Abstract 16.1 Introduction 16.2 Important Concepts of Linear Algebra 16.3 Two-Group Discriminant Analysis 16.4 k-Group Discriminant Analysis 16.5 Factor Analysis and Principal Component Analysis 16.6 Conclusion Appendix 1: Relationship Between Discriminant Analysis and Dummy Regression Analysis Appendix 2: Principal Component Analysis Bibliography Statistics, Itô’s Calculus and Option Pricing Model 17 Stochastic Volatility Option Pricing Models Abstract 17.1 Introduction 17.2 Nonclosed-Form Type of Option Pricing Model 17.3 Review of Characteristic Function 17.4 Closed-Form Type of Option Pricing Model 17.5 Conclusion Appendix: The Market Price of the Risk Bibliography 18 Alternative Methods to Estimate Implied Variance: Review and Comparison Abstract 18.1 Introduction 18.2 Numerical Search Method and Closed-Form Derivation Method to Estimate Implied Variance 18.3 MATLAB Approach to Estimate Implied Variance 18.4 Approximation Approach to Estimate Implied Variance 18.5 Some Empirical Results 18.5.1 Cases from USA—Individual Stock Options 18.5.2 Cases from China—ETF 50 Options 18.6 Conclusion Bibliography 19 Numerical Valuation of Asian Options with Higher Moments in the Underlying Distribution Abstract 19.1 Introduction 19.2 Definitions and the Basic Binomial Model 19.3 Edgeworth Binomial Model for Asian Option Valuation 19.4 Upper Bound and Lower Bound for European-Asian Options 19.5 Upper Bound and Lower Bound for American-Asian Options 19.6 Numerical Examples 19.6.1 Pricing European-Asian Options Under Lognormal Distribution 19.6.2 Pricing American-Asian Options Under Lognormal Distribution 19.6.3 Pricing European-Asian Options Under Distributions with Higher Moments 19.6.4 Pricing American-Asian Options Under Distributions with Higher Moments 19.7 Conclusion Bibliography 20 Itô’s Calculus: Derivation of the Black–Scholes Option Pricing Model Abstract 20.1 Introduction 20.2 The Itô Process and Financial Modeling 20.3 Itô Lemma 20.4 Stochastic Differential Equation Approach to Stock-Price Behavior 20.5 The Pricing of an Option 20.6 A Reexamination of Option Pricing 20.7 Remarks on Option Pricing 20.8 Conclusion Appendix: An Alternative Method to Derive the Black–Scholes Option Pricing Model Assumptions and the Present Value of the Expected Terminal Option Price Present Value of the Partial Expectation of the Terminal Stock Price Present Value of the Exercise Price Under Uncertainty Bibliography 21 Alternative Methods to Derive Option Pricing Models Abstract 21.1 Introduction 21.2 A Brief Review of Alternative Approaches for Deriving Option Pricing Model 21.2.1 Binomial Model 21.2.2 Black–Scholes Model 21.3 Relationship Between Binomial OPM and Black–Scholes OPM 21.4 Compare Cox et al. and Rendleman and Bartter Methods to Derive OPM 21.4.1 Cox et al. Method 21.4.2 Rendleman and Bartter Method 21.5 Lognormal Distribution Approach to Derive Black–Scholes Model 21.6 Using Stochastic Calculus to Derive Black–Scholes Model 21.7 Conclusion Appendix: The Relationship Between Binomial Distribution and Normal Distribution Bibliography 22 Constant Elasticity of Variance Option Pricing Model: Integration and Detailed Derivation Abstract 22.1 Introduction 22.2 The CEV Diffusion and Its Transition Probability Density Function 22.3 Review of Noncentral Chi-Square Distribution 22.4 The Noncentral Chi-Square Approach to Option Pricing Model 22.4.1 Detailed Derivations of C1 and C2 22.4.2 Some Computational Considerations 22.5 Conclusion Appendix: Proof of Feller’s Lemma Bibliography 23 Option Pricing and Hedging Performance Under Stochastic Volatility and Stochastic Interest Rates Abstract 23.1 Introduction 23.2 The Option Pricing Model 23.2.1 Pricing Formula for European Options 23.2.2 Hedging and Hedge Ratios 23.2.2.1 Delta-Neutral Hedges 23.2.2.2 Single-Instrument Minimum-Variance Hedges 23.2.3 Implementation 23.3 Data Description 23.4 Empirical Tests 23.4.1 Static Performance 23.4.2 Dynamic Hedging Performance 23.4.2.1 Effectiveness of Delta-Neutral Hedges 23.4.2.2 Effectiveness of Single-Instrument Minimum-Variance Hedges 23.4.3 Regression Analysis of Option Pricing and Hedging Errors 23.4.4 Robustness of Empirical Results 23.5 Conclusion Acknowledgments Appendix 1: Derivation of Stochastic Interest Model and Stochastic Volatility Model Bibliography 24 Nonparametric Method for European Option Bounds Abstract 24.1 Introduction 24.2 The Bounds 24.3 Comparisons 24.4 Extensions 24.5 Empirical Study 24.6 Conclusion Acknowledgements Appendix 1: Related Option Studies Adopting Nonparametric Method Appendix 2: Asset Pricing Model with a Stochastic Kernel Bibliography Author Index Subject Index