دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Masud Mansuripur
سری:
ISBN (شابک) : 9781608053216, 9781608052530
ناشر: Bentham Science
سال نشر: 2011
تعداد صفحات: 351
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Field, Force, Energy and Momentum in Classical Electrodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیلد، نیروی، انرژی و لحظه ای در الکترودینامیک کلاسیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نظریه کلاسیک الکترودینامیک مبتنی بر معادلات ماکسول و قانون نیروی لورنتز است. این کتاب با تجزیه و تحلیل دقیق این معادلات آغاز می شود و به بررسی پیامدهای گسترده آنها می پردازد. رویکرد سنتی به الکترودینامیک معادلات "میکروسکوپی" ماکسول را با بار الکتریکی و جریان الکتریکی به عنوان تنها منابع میدانهای الکتریکی و مغناطیسی بهعنوان اساسی در نظر میگیرد. متعاقباً، قطبش و مغناطش به معادلات ماکسول معرفی میشوند تا رفتار مشاهدهشده رسانههای ماده را توضیح دهند. معادلات افزوده شده، معروف به معادلات "ماکروسکوپی" ماکسول، برای کاربردهای عملی مفید در نظر گرفته می شوند، اما در نهایت به معادلات "میکروسکوپی" اساسی تر قابل تقلیل هستند. در مقابل، کتاب حاضر معادلات "ماکروسکوپی" ماکسول را به عنوان پایه و اساس الکترودینامیک کلاسیک در نظر می گیرد و بار الکتریکی، جریان الکتریکی، پلاریزاسیون و مغناطش را به عنوان اجزای اصلی رسانه های ماده مورد بررسی قرار می دهد. این اجزا نه تنها میدان های الکترومغناطیسی را تولید می کنند، بلکه با این میدان ها برهم کنش می کنند و با آنها انرژی و تکانه مبادله می کنند. قوانینی که بر توزیع انرژی و تکانه در فضا-زمان حاکم هستند، با جزئیات زیاد معرفی و مورد بحث قرار گرفته اند. فعل و انفعالات میدان های الکترومغناطیسی با ماده شامل تبادل انرژی با جریان های الکتریکی، قطبش و مغناطیس شدن و همچنین تبادل گشتاورهای خطی و زاویه ای از طریق نیروی الکترومغناطیسی و گشتاور اعمال شده بر اجزای فوق الذکر ماده است. در سراسر کتاب، تعداد زیادی مثال حل معادلات ماکسول را در موقعیتهای مختلف نشان میدهد و جریان انرژی و تکانه و همچنین توزیع نیرو و گشتاور را در سراسر سیستمهای میدان ماده مورد بررسی بررسی میکند.
The classical theory of electrodynamics is based on Maxwell's equations and the Lorentz law of force. This book begins with a detailed analysis of these equations, and proceeds to examine their far-reaching consequences. The traditional approach to electrodynamics treats the "microscopic" equations of Maxwell as fundamental, with electric charge and electric current as the sole sources of the electric and magnetic fields. Subsequently, polarization and magnetization are introduced into Maxwell's equations to account for the observed behavior of material media. The augmented equations, known as Maxwell's "macroscopic" equations, are considered useful for practical applications, but ultimately reducible to the more fundamental "microscopic" equations. In contrast, the present book takes Maxwell's "macroscopic" equations as the foundation of classical electrodynamics, and treats electrical charge, electrical current, polarization, and magnetization as the basic constituents of material media. These constituents not only produce the electromagnetic fields, but also interact with these fields and exchange energy and momentum with them. The laws that govern the distribution of energy and momentum in space-time are introduced and discussed in great detail. Interactions of electromagnetic fields with matter involve exchanges of energy with electrical currents, with polarization, and with magnetization, and also exchanges of linear and angular momenta via electromagnetic force and torque exerted on the aforementioned constituents of matter. Throughout the book, a large number of examples demonstrate the solution of Maxwell's equations in diverse situations, and examine the flow of energy and momentum as well as the distribution of force and torque throughout the matter-field systems under consideration.
Cover eBooks End User License Agreement Field, Force, Energy and Momentum in Classical Electrodynamics Dedication Contents Preface Keywords CHAPTER 1 Scalar and Vector Fields 1.1. Introduction 1.2. Space and time 1.3. Scalar and vector fields 1.4. Gradient of a scalar field 1.5. Integration of fields over time and/or space. 1.6. Divergence of a vector field 1.7. Theorem of Gauss. 1.8. Curl of a vector field. 1.9. Theorem of Stokes 1.10. Longitudinal and transverse vector plane-waves. General References Problems CHAPTER 2 Foundations of the Classical Maxwell-Lorentz Theory of Electrodynamics 2.1. Introduction 2.2. Definition: Permittivity eo of free-space 2.3. Definition: Permeability µ o of free space 2.4. Speed of light c and impedance of free space Zo: 2.5. Sources of electromagnetic fields 2.6. Electric field E and magnetic field H 2.7. Electric displacement D and magnetic induction B. 2.8. Rules of the game 2.9. Rule 1: Maxwell’s first equation 2.10. Rule 2: Maxwell’s second equation 2.11. Continuity equation of charge and current 2.12. Rule 3: Maxwell’s third equation 2.13. Rule 4: Maxwell’s fourth equation 2.14. Macroscopic versus microscopic equations 2.15. Bound charge and bound current associated with polarization and magnetization. 2.16. Magnetic bound charge and bound current 2.17. Maxwell’s boundary conditions. 2.18. Rule 5: Energy in electromagnetic systems. 2.19. Rule 6: Momentum density of the electromagnetic field 2.20. The Einstein-box gedanken experiment 2.21. The thought experiment of Balazs 2.22. Rule 7: Angular momentum density of the electromagnetic field. 2.23. Rule 8: Force density exerted by electromagnetic fields on material media 2.24. Conservation of linear momentum 2.25. Rule 9: Torque density exerted by electromagnetic fields on material media 2.26. Conservation of angular momentum General References Problems CHAPTER 3 Mathematical Preliminaries 3.1. Introduction 3.2. Elementary special functions 3.3. The Fourier transform operator 3.4. The Fourier theorem. 3.5. Fourier transformation in higher dimensions 3.6. Bessel functions and their properties General References Problems CHAPTER 4 Solving Maxwell’s Equations 4.1. Introduction 4.2. Plane-wave solutions of Maxwell’s equations 4.3. Electric field produced by a stationary point-charge (electrostatics). 4.4. Electric field of a line-charge (electrostatics). 4.5. Electric field of a uniformly-charged plate (electrostatics) 4.6. Magnetic field of a long, thin wire carrying a constant current (magnetostatics). 4.7. Magnetic field of a hollow cylinder carrying a constant current (magnetostatics). 4.8. Electric field produced by a point-dipole (electrostatics). 4.9. Fields radiated by an oscillating point-dipole (electrodynamics). 4.10. Radiation by an oscillating current sheet (electrodynamics). 4.11. Radiation by an oscillating line-current (electrodynamics). 4.12. Radiation by a hollow cylinder carrying an oscillating current (electrodynamics). General References Problems CHAPTER 5 Solving Maxwell’s Equations in Space-time: The Wave Equation 5.1. Introduction 5.2. Scalar potential . (r,t) as the solution of a 2nd-order partial differential equation. 5.3. Vector potential A(r,t) as the solution of a 2nd-order partial differential equation 5.4. Meaning of the Laplacian operator acting on a vector field 5.5. Relating scalar and vector potentials to their sources in the space-time domain 5.5.1. Example: Oscillating point-dipole 5.5.2. Example: Infinitely-long, thin, current-carrying wire radiating cylindrical waves 5.5.3. Example: Infinite sheet of oscillating current radiating plane-waves General References Problems CHAPTER 6 The Lorentz Oscillator Model 6.1. Introduction 6.2. Mass-and-spring model of an atomic dipole 6.3. Generalization to the case of multi-electron atoms and molecules 6.4. Drude model of the conduction electrons 6.5. The Clausius-Mossotti relation 6.6. Dependence of the real and imaginary parts of C(. ) on frequency. 6.7. Phase and group velocities 6.8. Step-response and Impulse-response 6.9. The Kramers-Kronig relations General References Problems CHAPTER 7 Plane Electromagnetic Waves in Isotropic, Homogeneous, Linear Media 7.1. Introduction 7.2. Complex vector algebra of the electromagnetic field. 7.3. Plane electromagnetic waves and their properties 7.4. Plane-waves in isotropic, homogeneous, linear media 7.5. Energy flux and the Poynting vector 7.6. Reflection and transmission of plane-waves at a flat interface between adjacent media. 7.6.1. Case of TM or p-polarized incident plane-wave at a flat interface located at z=0 7.6.2. Case of TE or s-polarized incident plane-wave at a flat interface located at z=0 7.7. Fresnel reflection and transmission coefficients in several cases of practical interest. 7.7.1. Special Case 1: normal incidence 7.7.2. Special Case 2: Brewster’s angle 7.7.3. Special Case 3: total internal reflection 7.8. Concluding remarks General References Problems CHAPTER 8 Simple Applications Involving Plane Electromagnetic Waves 8.1. Introduction 8.2. Transmission through a multilayer stack 8.3. Reflection and transmission coefficients of a non-absorbing slab 8.4. Optical characteristics of a parallel-plate slab 8.5. Reflection and transmission properties of bilayer slab 8.6. Compound dielectric slab 8.7. Optical cavity resonator 8.8. Perfectly matched layer References Problems CHAPTER 9 Maxwell’s Equations in Cylindrical Coordinates 9.1. Introduction 9.2. Solving Maxwell’s equations in linear, isotropic, homogeneous, circularly symmetric media 9.3. Bessel function Jm(·) as superposition of plane-waves 9.4. Hankel functions Hm(1,, 2)(. ) as superpositions of plane-waves 9.5. Guided modes and surface-plasmon-polaritons in systems of cylindrical symmetry 9.6. Energy flux and the Poynting vector General References Problems CHAPTER 10 Electromagnetic Momentum, Angular Momentum, Force and Torque 10.1. Introduction 10.2. Brief review of classical mechanics 10.3. Pulse of light incident on a reflecting surface 10.4. Continuous wave (cw) beam incident on a reflecting surface 10.5. Continuous wave (cw) beam incident on a transparent or semi-transparent slab. 10.6. Transparent prism illuminated at Brewster’s angle 10.7. Transparent parallel-plate slab illuminated at Brewster’s angle 10.8. Laser beam focused onto a spherical glass bead 10.9. Angular momentum of an optical vortex 10.10. Angular momentum of a circularly-polarized plane-wave General References Problems CHAPTER 11 Plane-wave Propagation in Linear, Homogeneous, Isotropic Media Exhibiting Temporal as well as Spatial Dispersion 11.1. Introduction 11.2. Mass-and-spring model of polarization exhibiting spatial dispersion 11.3. Dispersion relations 11.4. Case of s-polarized incident plane-wave. 11.5. Case of p-polarized incident plane-wave 11.6. Mechanical energy density General References CHAPTER 12 The Reciprocity Theorem 12.1. Introduction 12.2. Electromagnetic field radiated by an oscillating electric dipole 12.3. Electromagnetic field radiated by an oscillating magnetic dipole 12.4. Reciprocity in a system containing electrically-polarizable media 12.5. Reciprocity in systems containing both electric and magnetic media 12.6. Reciprocity in the presence of spatial dispersion. 12.7. Comparison with standard proofs of reciprocity 12.8. Summary and Concluding Remarks References Problems Solutions to Selected Problems Appendix A Vector Identities Appendix B Vector Operations in Cartesian, Cylindrical, and Spherical Coordinates Appendix C Useful Integrals and Identities Index