دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Lukong Cornelius Fai
سری:
ISBN (شابک) : 2020050051, 9780367702991
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 414
[415]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Feynman Path Integrals in Quantum Mechanics and Statistical Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتگرال های مسیر فاینمن در مکانیک کوانتومی و فیزیک آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای ایده آل برای استفاده از انتگرال های مسیر فاینمن در زمینه های مکانیک کوانتومی و فیزیک آماری ارائه می دهد. این برای دانشجویان تحصیلات تکمیلی و محققان در فیزیک، فیزیک ریاضی، ریاضیات کاربردی و همچنین شیمی نوشته شده است. مطالب به روشی در دسترس برای خوانندگانی ارائه شده است که دانش کمی از مکانیک کوانتومی دارند و هیچ مواجهه قبلی با انتگرال های مسیر ندارند. این کتاب با مفاهیم ابتدایی و مروری بر مکانیک کوانتومی شروع میشود که به تدریج چارچوبی را برای انتگرالهای مسیر فاینمن و نحوه اعمال آنها در مسائل مکانیک کوانتومی و فیزیک آماری ایجاد میکند. مجموعه مسائل در سراسر کتاب به خوانندگان اجازه می دهد تا درک خود را آزمایش کنند و توضیحات نظریه را در موقعیت های واقعی تقویت کنند.
This book provides an ideal introduction to the use of Feynman path integrals in the fields of quantum mechanics and statistical physics. It is written for graduate students and researchers in physics, mathematical physics, applied mathematics as well as chemistry. The material is presented in an accessible manner for readers with little knowledge of quantum mechanics and no prior exposure to path integrals. It begins with elementary concepts and a review of quantum mechanics that gradually builds the framework for the Feynman path integrals and how they are applied to problems in quantum mechanics and statistical physics. Problem sets throughout the book allow readers to test their understanding and reinforce the explanations of the theory in real situations.
Cover Half Title Title Page Copyright Page Table of Contents Preface Chapter 1: Path Integral Formalism Intuitive Approach 1.1 Probability Amplitude 1.1.1 Double Slit Experiment 1.1.2 Physical State 1.1.3 Probability Amplitude 1.1.4 Revisit Double Slit Experiment 1.1.5 Distinguishability 1.1.6 Superposition Principle 1.1.7 Revisit the Double Slit Experiment/Superposition Principle 1.1.8 Orthogonality 1.1.9 Orthonormality 1.1.10 Change of Basis 1.1.11 Geometrical Interpretation of State Vector 1.1.12 Coordinate Transformation 1.1.13 Projection Operator 1.1.14 Continuous Spectrum Chapter 2: Matrix Representation of Linear Operators 2.1 Matrix Element 2.2 Linear Self-Adjoint (Hermitian Conjugate) Operators 2.3 Product of Hermitian Operators 2.4 Continuous Spectrum 2.5 Schturm-Liouville Problem: Eigenstates and Eigenvalues 2.6 Revisit Linear Self-Adjoint (Hermitian) Operators 2.7 Unitary Transformation 2.8 Mean (Expectation) Value and Matrix Density 2.9 Degeneracy 2.10 Density Operator 2.11 Commutativity of Operators Chapter 3: Operators in Phase Space 3.1 Introduction 3.2 Configuration Space 3.3 Position and Wave Function 3.4 Momentum Space 3.5 Classical Action Chapter 4: Transition Amplitude 4.1 Path Integration in Phase Space 4.1.1 From the Schrödinger Equation to Path Integration 4.1.2 Trotter Product Formula 4.2 Transition Amplitude 4.2.1 Hamiltonian Formulation of Path Integration 4.2.2 Path Integral Subtleties 4.2.2.1 Mid-point Rule 4.2.3 Lagrangian Formulation of Path Integration 4.2.3.1 Complex Gaussian Integral 4.2.4 Transition Amplitude 4.2.5 Law for Consecutive Events 4.2.6 Semigroup Property of the Transition Amplitude Chapter 5: Stationary and Quasi-Classical Approximations 5.1 Stationary Phase Method/Fourier Integral 5.2 Contribution from Non-Degenerate Stationary Points 5.2.1 Unique Stationary Point 5.3 Quasi-Classical Approximation/Fluctuating Path 5.3.1 Free Particle Classical Action and Transition Amplitude 5.3.1.1 Free Particle Classical Action 5.3.1.2 Free Particle Transition Amplitude 5.3.1.3 From Path Integrals to Quantum Mechanics 5.4 Free and Driven Harmonic Oscillator Classical Action and Transition Amplitude 5.4.1 Free Oscillator Classical Action 5.4.2 Driven or Forced Harmonic Oscillator Classical Action 5.5 Free and Driven Harmonic Oscillator Transition Amplitude 5.6 Fluctuation Contribution to Transition Amplitude 5.6.1 Maslov Correction Chapter 6: Generalized Feynman Path Integration 6.1 Coordinate Representation 6.2 Free Particle Transition Amplitude 6.3 Gaussian Functional Feynman Path Integrals 6.4 Charged Particle in a Magnetic Field Chapter 7: From Path Integration to the Schrödinger Equation 7.1 Wave Function 7.2 Schrödinger Equation 7.3 The Schrödinger Equation’s Green’s Function 7.4 Transition Amplitude for a Time-Independent Hamiltonian 7.5 Retarded Green Function Chapter 8: Quasi-Classical Approximation 8.1 Wentzel-Kramer-Brillouin (WKB) Method 8.1.1 Condition of Applicability of the Quasi-Classical Approximation 8.1.2 Bounded Quasi-Classical Motion 8.1.3 Quasi-Classical Quantization 8.1.4 Path Integral Link 8.2 Potential Well 8.3 Potential Barrier 8.4 Quasi-Classical Derivation of the Propagator 8.5 Reflection and Tunneling via a Barrier 8.6 Transparency of the Quasi-Classical Barrier 8.7 Homogenous Field 8.7.1 Motion in a Central Symmetric Field 8.7.1.1 Polar Equation 8.7.1.2 Radial Equation for a Spherically Symmetric Potential in Three Dimensions 8.7.2 Motion in a Coulombic Field 8.7.2.1 Hydrogen Atom Chapter 9: Free Particle and Harmonic Oscillator 9.1 Eigenfunction and Eigenvalue 9.1.1 Free Particle 9.1.2 Transition Amplitude for a Particle in a Homogenous Field 9.2 Harmonic Oscillator 9.3 Transition Amplitude Hermiticity Chapter 10: Matrix Element of a Physical Operator via Functional Integral 10.1 Matrix Representation of the Transition Amplitude of a Forced Harmonic Oscillator 10.1.1 Charged Particle Interaction with Phonons Chapter 11: Path Integral Perturbation Theory 11.1 Time-Dependent Perturbation 11.2 Transition Probability 11.3 Time-Energy Uncertainty Relation 11.4 Density of Final State 11.4.1 Transition Rate 11.5 Continuous Spectrum due to a Constant Perturbation 11.6 Harmonic Perturbation Chapter 12: Transition Matrix Element Chapter 13: Functional Derivative 13.1 Functional Derivative of the Action Functional 13.2 Functional Derivative and Matrix Element Chapter 14: Quantum Statistical Mechanics Functional Integral Approach 14.1 Introduction 14.2 Density Matrix 14.2.1 Partition Function 14.3 Expectation Value of a Physical Observable 14.4 Density Matrix 14.5 Density Matrix in the Energy Representation Chapter 15: Partition Function and Density Matrix Path Integral Representation 15.1 Density Matrix Path Integral Representation 15.1.1 Density Matrix Operator Average Value in Phase Space 15.1.1.1 Generalized Gaussian Functional Path Integral in Phase Space 15.1.2 Density Matrix via Transition Amplitude 15.2 Partition Function in the Path integral Representation 15.3 Particle Interaction with a Driven or Forced Harmonic Oscillator: Partition Function 15.4 Free Particle Density Matrix and Partition Function 15.5 Quantum Harmonic Oscillator Density Matrix and Partition Function Chapter 16: Quasi-Classical Approximation in Quantum Statistical Mechanics 16.1 Centroid Effective Potential 16.2 Expectation Value Chapter 17: Feynman Variational Method Chapter 18: Polaron Theory 18.1 Introduction 18.2 Polaron Energy and Effective Mass 18.3 Functional Influence Phase 18.3.1 Polaron Model Lagrangian 18.3.2 Polaron Partition Function 18.4 Influence Phase via Feynman Functional Integral in The Density Matrix Representation 18.4.1 Expectation Value of a Physical Quantity 18.4.1.1 Density matrix 18.5 Full System Polaron Partition Function in a 3D Structure 18.6 Model System Polaron Partition Function in a 3D Structure 18.7 Feynman Inequality and Generating Functional 18.8 Polaron Characteristics in a 3D Structure 18.8.1 Polaron Asymptotic Characteristics 18.9 Polaron Characteristics in a Quasi-1D Quantum Wire 18.9.1 Hamiltonian of the Electron in a Quasi 1D Quantum Wire 18.9.1.1 Lagrangian of the Electron in a Quasi-1D Quantum Wire 18.9.1.2 Partition function of the Electron in a Quasi-1D Quantum Wire 18.10 Polaron Generating Function 18.11 Polaron Asymptotic Characteristics 18.12 Strong Coupling Regime Polaron Characteristics 18.13 Bipolaron Characteristics in a Quasi-1D Quantum Wire 18.13.1 Introduction 18.13.2 Bipolaron Diagrammatic Representation 18.13.3 Bipolaron Lagrangian 18.13.4 Bipolaron Equation of Motion 18.13.5 Transformation into Normal Coordinates 18.13.5.1 Diagonalization of the Lagrangian 18.13.6 Bipolaron Partition Function 18.13.7 Bipolaron Generating Function 18.13.8 Bipolaron Asymptotic Characteristics 18.14 Polaron Characteristics in a Quasi-0D Spherical Quantum Dot 18.14.1 Introduction 18.14.2 Polaron Lagrangian 18.14.3 Normal Modes 18.14.4 Lagrangian Diagonalization 18.14.4.1 Transformation to Normal Coordinates 18.14.5 Polaron Partition Function 18.14.6 Generating Function 18.15 Bipolaron Characteristics in a Quasi-0D Spherical Quantum Dot 18.15.1 Introduction 18.15.2 Model Lagrangian 18.15.3 Model Lagrangian 18.15.3.1 Equation of Motion and Normal Modes 18.15.4 Diagonalization of the Lagrangian 18.15.5 Partition Function 18.15.6 Full System Influence Phase 18.16 Bipolaron Energy 18.16.1 Generating Function 18.16.2 Bipolaron Characteristics 18.17 Polaron Characteristics in a Cylindrical Quantum Dot 18.17.1 System Hamiltonian 18.17.2 Transformation to Normal Coordinates 18.17.2.1 Lagrangian Diagonalization 18.17.3 Polaron Energy/Partition Function 18.17.4 Polaron Generating Function 18.17.5 Polaron Energy 18.18 Bipolaron Characteristics in a Cylindrical Quantum Dot 18.18.1 System Hamiltonian 18.18.1.1 Model System Action Functional 18.18.1.2 Equation of Motion / Normal Modes 18.18.1.3 Lagrangian Diagonalization 18.18.1.4 Bipolaron Partition Function 18.18.1.5 Bipolaron Generating Function 18.18.1.6 Bipolaron Energy 18.19 Polaron Characteristics in a Quasi-0D Cylindrical Quantum Dot with Asymmetrical Parabolic Potential 18.20 Polaron Energy 18.21 Bipolaron Characteristics in a Quasi-0D Cylindrical Quantum Dot with Asymmetrical Parabolic Potential 18.22 Polaron in a Magnetic Field Chapter 19: Multiphoton Absorption by Polarons in a Spherical Quantum Dot 19.1 Theory of Multiphoton Absorption by Polarons 19.2 Basic Approximations 19.3 Absorption Coefficient Chapter 20: Polaronic Kinetics in a Spherical Quantum Dot Chapter 21: Kinetic Theory of Gases 21.1 Distribution Function 21.2 Principle of Detailed Equilibrium 21.3 Transport Phenomenon and Boltzmann-Lorentz Kinetic Equation 21.4 Transport Relaxation Time 21.5 Boltzmann H-Theorem 21.6 Thermal Conductivity 21.7 Diffusion 21.8 Electron–Phonon System Equation of Motion References Index A B C D E F G H I J K L M N O P Q R S T U V W Z