دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed. 2020 نویسندگان: Byung-Eun Park (editor), Hiroshi Ishiwara (editor), Masanori Okuyama (editor), Shigeki Sakai (editor), Sung-Min Yoon (editor) سری: Topics in Applied Physics (131) ISBN (شابک) : 9811512116, 9789811512117 ناشر: Springer سال نشر: 2020 تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Ferroelectric-Gate Field Effect Transistor Memories: Device Physics and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حافظه های ترانزیستوری اثر میدان فروالکتریک گیت: فیزیک دستگاه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پوشش جامعی از ویژگیهای مواد، فناوریهای فرآیند و عملیات دستگاه برای ترانزیستورهای اثر میدان حافظه با استفاده از لایههای نازک فروالکتریک معدنی یا آلی ارائه میکند. این حافظه فروالکتریک از نوع ترانزیستوری، فیزیک اساسی دستگاه و تأثیر صنعتی بالقوه بزرگی دارد.
در میان کاربردهای مختلف لایههای نازک فروالکتریک، توسعه حافظه دسترسی تصادفی فروالکتریک غیرفرار (FeRAM) به طور فعال از زمان گذشته پیشرفت کرده است. اواخر دهه 1980 و از سال 1995 به تولید انبوه متوسط برای کاربردهای خاص رسید. دو نوع سلول حافظه در حافظه های غیرفرار فروالکتریک وجود دارد. یکی از نوع خازن FeRAM و دیگری ترانزیستور اثر میدانی (FET) از نوع FeRAM است. اگرچه FeRAM نوع FET ادعا میکند که مقیاسپذیری نهایی و ویژگیهای بازخوانی غیرمخرب را دارد، اما FeRAMهای نوع خازن مورد توجه شرکتهای بزرگ حافظههای نیمهرسانا بودهاند، زیرا FET فروالکتریک دارای نقصهای کشنده در گفتگوی متقابل برای دسترسی تصادفی و زمان نگهداری کوتاه است. .
هدف این کتاب ارائه تاریخچه توسعه، مسائل فنی، روشهای ساخت، و کاربردهای امیدوارکننده دستگاههای حافظه فروالکتریک نوع FET، ارائه مروری جامع از فناوریهای گذشته، حال و آینده است. موضوعات مورد بحث منجر به پیشرفتهای بیشتر در الکترونیک با مساحت بزرگ که بر روی لایههای شیشه، پلاستیک یا کاغذ و همچنین در الکترونیک Si معمولی اجرا میشود، میشود.
این کتاب از فصلهایی تشکیل شده است که توسط محققان برجسته در مواد فروالکتریک و فروالکتریک نوشته شده است. فن آوری های دستگاه های مرتبط، از جمله لایه های نازک اکسید و فروالکتریک آلی.
This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact.
Among various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has been most actively progressed since the late 1980s and reached modest mass production for specific application since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims the ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time.
This book aims to provide the readers with development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass, plastic or paper substrates as well as in conventional Si electronics.
The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.
Preface Contents Contributors Part I Introduction 1 Features, Principles, and Developments of Ferroelectric-Gate Field-Effect Transistors 1.1 Background of Ferroelectric Memories 1.1.1 Historical Background 1.1.2 Classification of Nonvolatile Ferroelectric Memories 1.2 Degradation and Improvement of Memorized States in MFIS Structures 1.2.1 Degradation of Memorized States 1.2.2 Theoretical Analysis of the Band Profile and Retention Degradation of MFIS Capacitors 1.2.3 Calculated Time Dependences of Band Profile and Capacitance of the MFIS Structure 1.2.4 Effects of Currents Through the Ferroelectric and Insulator Layers on the Retention Characteristics of the MFIS Structure 1.2.5 Methods for Suppressing Leakage Current Through the MFIS Structure 1.2.6 Retention Improvement by Heat and Radical Treatments 1.3 Improvement of Ferroelectric-Gate FETs 1.4 Conclusion References Part II Practical Characteristics of Inorganic Ferroelectric-Gate FETs: Si-Based Ferroelectric-Gate Field Effect Transistors 2 Development of High-Endurance and Long-Retention FeFETs of Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si Gate Stacks 2.1 Introduction 2.2 Basic Fabrication Process and Characterization of Pt/SBT/HAO/Si FeFETs 2.2.1 Fabrication Process 2.2.2 Static Memory Window 2.2.3 Retention 2.2.4 Endurance 2.2.5 Writing Speed 2.2.6 Id–Vg and Retention at Elevated Temperatures 2.3 Requirements to the Layers in MFIS 2.3.1 Requirements to the Layers M, F, I 2.3.2 Requirements Especially to the I-and-IL Layers 2.3.3 Requirements to the F Layer 2.4 Preparation of HAO for Pt/SBT/HAO/Si Gate Stack 2.4.1 Single HAO(x) and the MIS Characters at Various Composition Ratios 2.4.2 Comparison of O2 and N2 Ambient in Depositing HAO 2.4.3 Effect of N2 Ambient Pressure Increase in Depositing HAO 2.5 Nitriding and Oxinitriding Si of MFIS FeFET 2.5.1 Direct Nitriding Si for Large Memory Window of FeFET 2.5.2 Oxinitriding Si for Improving the Si Interface of FeFET 2.6 Using CSBT Instead of SBT in FeFET 2.7 Summary References 3 Downsizing of High-Endurance and Long-Retention Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si FeFETs 3.1 Introduction 3.2 Downsizing Process of CSBT-Based FeFETs 3.2.1 2 μm ≤ L < 10 μm 3.2.2 0.26 μm ≤ L < 1 μm 3.2.3 0.1 μm ≤ L < 0.2 μm 3.3 Summary References 4 Nonvolatile Field-Effect Transistors Using Ferroelectric-Doped HfO2 Films 4.1 Introduction 4.2 FeFET Integration 4.2.1 Ferroelectric-Doped HfO2 4.2.2 Si-Doped HfO2 4.2.3 Other Doped HfO2 4.3 Memory Properties of Ferroelectric Hafnium Oxide 4.4 Hafnium Oxide-Based Ferroelectric Field-Effect Transistor 4.4.1 Device Performance 4.4.2 Device Reliability 4.5 Summary and Outlook References 5 Switching in Nanoscale Hafnium Oxide-Based Ferroelectric Transistors 5.1 Introduction 5.2 Experimental Section 5.3 Abrupt Switching 5.4 Stochastic Switching 5.5 Accumulative Switching 5.6 Conclusions References Part III Practical Characteristics of Inorganic Ferroelectric-Gate FETs: Thin Film-Based Ferroelectric-Gate Field Effect Transistors 6 Oxide-Channel Ferroelectric-Gate Thin-Film Transistors with Nonvolatile Memory Function 6.1 Introduction 6.2 Features of Ferroelectric-Gate Insulator 6.3 Charge Density of ITO-Channel FGTs 6.4 Electrical Properties of ITO-Channel FGTs 6.5 Transparent ITO/BLT FGT 6.6 ITO-Channel TFTs with High-k Gate Insulator 6.7 Conclusions References 7 ZnO/Pb(Zr,Ti)O3 Gate Structure Ferroelectric FETs 7.1 Introduction 7.2 Experimental Procedure 7.3 Device Characteristics and Discussions 7.3.1 Basic Characteristics 7.3.2 Correlated Motion Dynamics of Electron Channels and Domain Walls 7.3.3 60-nm-Channel-Length FeFET 7.4 Summary References 8 Novel Ferroelectric Gate Field-Effect Transistors (FeFETs); Controlled Polarization-Type FeFETs 8.1 Introduction 8.1.1 Field-Effect Control of Carrier Concentration 8.1.2 Ferroelectric Field Effect 8.2 Fabrication and Properties of CP-Type FeTFTs 8.2.1 Bottom-Gate-Type TFTs (1-a in Fig. 8.1) 8.2.2 Impedance Analysis of Channel Conduction Underneath the Bottom-Ferroelectric-Gate Using an RC Lumped Constant Circuit 8.2.3 Top-Gate-Type TFTs (2-B in Fig. 8.1) 8.3 Effect of Spontaneous Polarization of the Polar Semiconductor on the Electronic Structure of the Poly(Vinylidene Fluoride–Trifluoroethylene)/ZnO Heterostructures 8.4 Conclusions References Part IV Practical Characteristics of Organic Ferroelectric-Gate FETs: Si-Based Ferroelectric-Gate Field Effect Transistors 9 Nonvolatile Ferroelectric Memory Transistors Using PVDF, P(VDF-TrFE) and Blended PVDF/P(VDF-TrFE) Thin Films 9.1 Introduction of Nonvolatile Ferroelectric Memory Transistors 9.2 Experimental Procedure 9.3 Results and Discussion 9.3.1 Electrical Properties of Poly(Vinylidene) (PVDF) Thin Film 9.3.2 Electrical Properties of MFSFETs with PVDF Thin Film 9.3.3 Electrical Properties of MFSFETs with PVDF-TrFE Thin Film 9.3.4 Electrical Properties of FeFETs with Blended PVDF/P(VDF-TrFE) Thin Film 9.4 Conclusion References 10 Poly(Vinylidenefluoride-Trifluoroethylene) P(VDF-TrFE)/Semiconductor Structure Ferroelectric-Gate FETs 10.1 Introduction 10.1.1 Problem of Oxide/Silicon-Based FeFETs 10.1.2 Property of Organic Ferroelectric Material; P(VDF-TrFE) 10.2 Ferroelectric Properties of VDF Base Polymers 10.2.1 Ferroelectricity of PVDF 10.2.2 Items that Should Be Solved Before Application 10.2.3 Ferroelectricity of Random Copolymer P(VDF-TrFE) 10.3 Ferroelectric P(VDF-TrFE) Gate FeFETs 10.3.1 FeFETs Using Inorganic Semiconductors 10.3.2 FeFETs Using Organic Semiconductors 10.4 Summary References Part V Practical Characteristics of Organic Ferroelectric-Gate FETs: Thin Film-Based Ferroelectric-Gate Field Effect Transistors 11 P(VDF-TeFE)/Organic Semiconductor Structure Ferroelectric-Gate FETs 11.1 Introduction 11.1.1 Organic Ferroelectric-Gate FETs 11.1.2 PVDF-TeFE Organic Ferroelectrics 11.1.3 Organic Semiconductors 11.2 Experimental Procedure 11.2.1 Preparation of P(VDF-TeFE) Thin Films 11.2.2 Preparation of Organic Semiconductors 11.2.3 Preparation and Characterization Methods for Ferroelectric-Gate FETs 11.3 Results and Discussion 11.3.1 Basic Properties of Fabricated P(VDF-TeFE) Thin Films 11.3.2 Basic Properties of Pentacene and Rubrene Semiconductors 11.3.3 P(VDF-TeFE)/pentacene Ferroelectric-Gate FETs 11.3.4 P(VDF-TeFE)/rubrene Ferroelectric-Gate FETs 11.4 Conclusions References 12 Nonvolatile Ferroelectric Memory Thin-Film Transistors Using a Poly(Vinylidene Fluoride Trifluoroethylene) Gate Insulator and an Oxide Semiconductor Active Channel 12.1 Introduction 12.2 Choice of Materials 12.2.1 Organic Ferroelectric Gate Insulators 12.2.2 Oxide Semiconductor Active Channels 12.3 Design of Device Structures 12.3.1 Design Schemes for Device Operations [26] 12.3.2 Typical Device Structure and Characteristics 12.4 Process Optimization 12.4.1 Lithography Compatible Patterning Process 12.4.2 Interface Protection Layer 12.4.3 Oxide Channel Solution Process 12.5 Promising Applications 12.5.1 Nonvolatile Flexible Memory 12.5.2 Nonvolatile Transparent Memory 12.5.3 Low-Power Backplane Device for Display Panel 12.5.4 Other Feasible Applications 12.6 Memory Array Integration 12.6.1 Memory Cell Integration Process 12.6.2 Disturb-Free Memory Cell Array 12.7 Remaining Technical Issues 12.7.1 Low-Voltage Operation 12.7.2 Turn-on Voltage Control 12.7.3 Program Speed 12.7.4 Data Retention 12.8 Conclusions and Outlooks References Part VI Practical Characteristics of Organic Ferroelectric-Gate FETs: Ferroelectric-Gate Field Effect Transistors with Flexible Substrates 13 Mechanically Flexible Nonvolatile Field Effect Transistor Memories with Ferroelectric Polymers 13.1 Introduction 13.2 FeFETs with Ferroelectric Polymers 13.2.1 Ferroelectric Polymers 13.2.2 Operation Principle of FeFETs 13.3 FeFET on Flexible Substrates 13.3.1 Flexible FeFETs with Inorganic Semiconductors 13.3.2 Flexible FeFETs with Low Molecule Organic Semiconductors 13.3.3 Flexible FeFETs with Polymer Semiconductors 13.4 Characterization of Mechanical Properties of a Flexible FeFET 13.4.1 Bending Characteristics 13.4.2 Nano-indentation 13.4.3 Nano-scratch 13.5 Conclusions References 14 Paper Transistors with Organic Ferroelectric P(VDF-TrFE) Thin Films Using a Solution Processing Method 14.1 Introduction 14.2 Experimental Procedure 14.3 Results and Discussion 14.3.1 P(VDF-TrFE)/Al/Paper Structures 14.3.2 P3HT/PVDF-TrFE/Al/Paper Structures 14.4 Conclusion References 15 Non-volatile Organic Ferroelectric Field-Effect Transistors Fabricated on Al Foil and Polyimide Substrates 15.1 Ultra-flexible Non-volatile Organic Ferroelectric Field-Effect Transistors 15.2 Experimental Procedure 15.3 Results and Discussion 15.3.1 Characteristics of Ultra-Flexible FeFETs on Polyimide 15.3.2 Organic Field-Effect Transistors Fabricated on Al Foil Substrates 15.4 Conclusion References 16 Novel Application of FeFETs to NAND Flash Memory Circuits 16.1 Introduction 16.2 Fabrication Process 16.3 Test Element Group Characteristics 16.3.1 Single-Cell Performance 16.3.2 Logic Element Performance: NOT Gates and a Ring Oscillator 16.3.3 Test Circuits for Block Selector and Bit-Line Selector 16.3.4 Single-Cell Self-boost Operations Using a 4 × 2 Miniature Array 16.4 64 kb Fe-NAND Flash Memory 16.4.1 Architecture 16.4.2 Basic Operations 16.4.3 Results and Discussion 16.5 Conclusion References 17 Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material’s Point of View 17.1 Introduction 17.2 Electrostatic Supercapacitors 17.3 Electrocaloric Cooling 17.4 Pyroelectric Energy Harvesting 17.5 IR Sensing 17.6 Perspectives 17.7 Conclusions References 18 Polymorphism of Hafnia-Based Ferroelectrics for Ferroelectric Field-Effect Transistors 18.1 Thermodynamic Stabilization of the Pca21 Orthorhombic Phase 18.1.1 Effects of Dopants 18.1.2 Surface/Interface/Grain Boundary Energy Effects 18.1.3 Effects of the Film Stress and Upper Capping Layer 18.2 Kinetic Mechanism 18.3 Conclusion References 19 Adaptive-Learning Synaptic Devices Using Ferroelectric-Gate Field-Effect Transistors for Neuromorphic Applications 19.1 Introduction 19.2 Operation Principles of Adaptive-Learning Neuron Circuits 19.2.1 Pulse Frequency Modulation-Type Ferroelectric Synaptic Device Operations 19.2.2 Multiple-Input Neuron Circuit and Electrically Modifiable Synapse Array 19.3 Fundamental Characteristics of Ferroelectric Synapse FETs 19.3.1 Fundamental Characteristics of Ferroelectric SrBi2Ta2O9 (SBT) Thin Films 19.3.2 Basic Device Characteristics of MFSFETs 19.4 Electrically Modifiable Synapse Array Using MFSFET 19.4.1 Device Design of Ferroelectric Synapse Array 19.4.2 Fabrication Process 19.4.3 Weighted-Sum Operation of Synapse Array 19.5 Adaptive-Learning Neuron Circuit Composed of an MFSFET and a CUJT Oscillation Circuit 19.5.1 Device Design and Circuit Layout 19.5.2 Adaptive-Learning Function of Ferroelectric Neuron Circuit 19.6 Improvement of Output Characteristics in Ferroelectric Neuron Circuit Using CMOS Schmitt-Trigger Oscillator 19.6.1 Device and Circuit Designs 19.6.2 Adaptive-Learning Functions with Improved Output Characteristics 19.7 Improvement of Memory Retention in Ferroelectric Neuron Circuit Using MFMIS-Structured Synapse Device 19.7.1 Device Designs for MFMIS Synapse Device 19.7.2 Adaptive-Learning Functions with Improved Memory Retention Characteristic 19.8 Conclusions and Outlooks References 20 FeFETs for Neuromorphic Systems 20.1 Introduction 20.2 FeFETs for Spiking Neural Networks 20.2.1 FeFET as a Neuron 20.2.2 FeFET as a Synapse 20.3 FeFETs for Deep Neural Networks 20.4 Conclusions References 21 Applications of Oxide-Channel Ferroelectric-Gate Thin-Film Transistors 21.1 Introduction 21.2 Memory Circuit Application Using Ferroelectric-Gate Transistors 21.3 Fabrication of NAND Memory Cell Arrays Using Oxide-Channel Ferroelectric-Gate Transistors with 2-Tr Memory Cell Configuration 21.4 Solution Process for Oxide-Channel Ferroelectric-Gate Transistors 21.4.1 All-Oxide Ferroelectric-Gate TFTs by Total Solution Process 21.4.2 Fabrication of Oxide-Channel Ferroelectric-Gate TFTs by Nano-rheology Printing (n-RP) 21.5 Summary and Conclusion References