ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Federal Data Science: Transforming Government and Agricultural Policy Using Artificial Intelligence

دانلود کتاب علم داده فدرال: تغییر سیاست دولت و کشاورزی با استفاده از هوش مصنوعی

Federal Data Science: Transforming Government and Agricultural Policy Using Artificial Intelligence

مشخصات کتاب

Federal Data Science: Transforming Government and Agricultural Policy Using Artificial Intelligence

دسته بندی: پایگاه داده ها
ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 0128124431, 9780128124437 
ناشر: Academic Press 
سال نشر: 2017 
تعداد صفحات: 231 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Federal Data Science: Transforming Government and Agricultural Policy Using Artificial Intelligence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علم داده فدرال: تغییر سیاست دولت و کشاورزی با استفاده از هوش مصنوعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front-Matter_2018_Federal-Data-Science
Copyright_2018_Federal-Data-Science
	Copyright
Dedication_2018_Federal-Data-Science
	Dedication
List-of-Contributors_2018_Federal-Data-Science
	List of Contributors
About-the-Editors_2018_Federal-Data-Science
	About the Editors
Note-From-the-Editors_2018_Federal-Data-Science
	Note From the Editors
Foreword_2018_Federal-Data-Science
	Foreword
Preface_2018_Federal-Data-Science
	Preface
Chapter-1---A-Day-in-the-Life-of-a-Federal-Analyst-and-a_2018_Federal-Data-S
	1 - A Day in the Life of a Federal Analyst and a Federal Contractor
		1. In the Early Morning
		2. Later in the Afternoon
		3. Late, Late at Night
		4. Therefore, This Book
		References
Chapter-2---Disseminating-Government-Data-Effectively-in_2018_Federal-Data-S
	2 - Disseminating Government Data Effectively in the Age of Open Data
		1. Data Dissemination in the Federal Government: From Colonial America to Open Data
		2. Open Data Policy: A New Era in Data Dissemination
		3. New Era, New Challenges
		4. Toward a Modern and Effective Data Dissemination Strategy
		5. Conclusion
		Disclaimer
		References
Chapter-3---Machine-Learning-for-the-Government--Challenge_2018_Federal-Data
	3 - Machine Learning for the Government: Challenges and Statistical Difficulties
		1. Introduction
		2. An Introduction to Data Mining
			2.1 Learning With Orange
		3. Result Validation, Trust but Verify
			3.1 Iris Aside
		4. Model Overfitting, Too Good to Be True
		5. Statistical Bias, Impacting Results Before Analysis Begins
		6. Segmentation and Simpson’s Paradox
		7. Outliers and Bad Data
		8. Nonreproducibility and Statistics Hunting
		9. Conclusion
		References
Chapter-4---Making-the-Case-for-Artificial-Intelligence-at-Go_2018_Federal-D
	4 - Making the Case for Artificial Intelligence at Government: Guidelines to Transforming Federal Software Systems
		1. Motivations and Objections
		2. AI Technologies and Government Use Cases
			2.1 Knowledge-Based Systems
			2.2 Big Data
			2.3 Machine Learning and Data Analytics
		3. Conclusions
		References
Chapter-5---Agricultural-Data-Analytics-for-Environmenta_2018_Federal-Data-S
	5 - Agricultural Data Analytics for Environmental Monitoring in Canada
		1. Introduction
		2. Materials and Methods
			2.1 Input Data
			2.2 Input Preparation
			2.3 Input Accuracy Assessment
			2.4 Coregistration
			2.5 Rule Development
			2.6 Contextual Assessment and Rectification
			2.7 Assessment of Class Distributions
			2.8 Output Accuracy Assessment
		3. Results and Discussion
			3.1 Accuracy Assessment
			3.2 National-Scale Maps
			3.3 Land Use Change
		4. Conclusions
		Acknowledgments
		References
Chapter-6---France-s-Governmental-Big-Data-Analytics--From_2018_Federal-Data
	6 - France’s Governmental Big Data Analytics: From Predictive to Prescriptive Using R
		1. Introduction
		2. Materials and Methods: “Parsimonious Modeling for Prescriptive Data Science,” Applied to French Agriculture
			2.1 Agricultural Data in France
			2.2 Open Taxonomies for Agricultural Data Sciences
			2.3 Big Data and Data Science in France
		3. Results
			3.1 A Parsimonious Agricultural Taxonomy for Data Collection, an Intermediate Result
			3.2 Agricultural Descriptive and Predictive Data Science With R
				3.2.1 Crop Monitoring
				3.2.2 Evapotranspiration
				3.2.3 Prediction of Soil Fertility
			3.3 From Descriptive Analytics to Prescriptive Analytics Through Predictive Analytics
				3.3.1 Toward Prescriptive Analytics
				3.3.2 Three Main Kinds of Aggregation Engine
					3.3.2.1 Ensemble Methods
					3.3.2.2 Optimization of a Utility Function
					3.3.2.3 Heuristic and Fuzzy
				3.3.3 Available R Building Blocks for Building an Aggregation Engine (Nonexhaustive Mapping)
		4. Conclusion
		References
Chapter-7---Agricultural-Remote-Sensing-and-Data-Scien_2018_Federal-Data-Sci
	7 - Agricultural Remote Sensing and Data Science in China
		1. Agricultural Remote Sensing in China
			1.1 Agricultural Remote Sensing Research and Applications
			1.2 China Agricultural Remote Sensing Monitoring System
		2. Data Science in China
			2.1 Data Science Development in China
			2.2 Science Data Sharing and Services Platforms
		3. Conclusions
		Acknowledgments
		References
Chapter-8---Data-Visualization-of-Complex-Information-Throu_2018_Federal-Dat
	8 - Data Visualization of Complex Information Through Mind Mapping in Spain and the European Union
		1. Data Science Ecosystem in the European Union
			1.1 Horizon 2020 (Horizon 2020 Documents, 2016)
			1.2 The European Data Landscape Monitoring Tool (European Data Landscape Monitoring Tool Documents, 2017)
			1.3 Open Data Incubator Europe
			1.4 Data Science Education in the European Union
				1.4.1 European Data Science Academy
				1.4.2 Educational Curriculum for the Usage of Linked Data (EUCLID Documents, 2017)
				1.4.3 Master Course in Data Mining and Knowledge Management
				1.4.4 European Institute of Innovation & Technology (EIT Documents, 2017) Digital Master School. Data Science Master (EIT Data Sc...
				1.4.5 Erasmus Mundus Joint Master Degree Program in Big Data Management and Analytics (BDMA, 2017)
			1.5 Other Organizations
				1.5.1 Open Data Institute
				1.5.2 European Data Forum (EDF Documents, 2016)
				1.5.3 Big Data Value Association (BDV Documents, 2017)
			1.6 Data Science and Big Data in Spain
		2. Open Data in the European Union and Spain
			2.1 Open Data in the European Union
			2.2 Open Data in Spain
		3. Visualization of Big Data and Open Data
		4. Mind Mapping
			4.1 Introduction
			4.2 Digital Mind Maps
			4.3 The Importance of Mind Mapping
			4.4 Advantages of Mind Mapping
			4.5 Experiments and Surveys Related to Mind Mapping
			4.6 Use of Mind Mapping in Governments
			4.7 Mind Mapping Automation
				4.7.1 Statistical Analysis With R (Infoseg Documents, 2013a,b)
				4.7.2 Big Open Data Analysis Using R (Infoseg, 2014a,b)
				4.7.3 Open Data (Infoseg, 2013c,d)
				4.7.4 Complex Information Systems
				4.7.5 Analysis of Information Security Log Files
				4.7.6 Mind Mapping Integration in Artificial Intelligence Systems
		5. Uses of Mind Mapping in the Federal Government
		6. Conclusions
		References
Chapter-9---A-Deployment-Life-Cycle-Model-for-Agricultural-D_2018_Federal-Da
	9 - A Deployment Life Cycle Model for Agricultural Data Systems Using Kansei Engineering and Association Rules
		1. Introduction and Background
			1.1 A Measuring Stick
			1.2 Motivation
			1.3 Systems Life Cycle Models
			1.4 Analytical Models for the Government
		2. Related Work
			2.1 Intelligent Software Testing
			2.2 Kansei and Software Deployment (A Review)
		3. The Federal Deployment and Adoption Life Cycle
			3.1 Association Rules Testing
			3.2 Kansei Engineering Deployment and Traceability
		4. Experimental Studies on Kansei Engineering Deployment and Traceability and Association Rules Testing
			4.1 Code Coverage and Maintenance Costs of Association Rules Testing
			4.2 The Agricultural Analyst’s Kansei Survey
		5. Conclusions and Future Work
		References
		Further Reading
Chapter-10---Federal-Big-Data-Analytics-in-the-Health-Domain_2018_Federal-Da
	10 - Federal Big Data Analytics in the Health Domain: An Ontological Approach to Data Interoperability
		1. Introduction
		2. Data Interoperability in the Health Domain
		3. Ontologies as the Basis for Interoperability
			3.1 Lexicon as the Basis for Semantic Congruity
			3.2 Ontological Dimensions
			3.3 Ontology Development
			3.4 Ontology Integration
			3.5 Ontology Operationalization
			3.6 Metadata Foundations
		4. Conclusion
		References
Chapter-11---Geospatial-Data-Discovery--Management--and-Anal_2018_Federal-Da
	11 - Geospatial Data Discovery, Management, and Analysis at National Aeronautics and Space Administration (NASA)
		1. Introduction
		2. Geospatial Data Discovery
		3. Big Geospatial Data Management
		4. Large-Scale Scientific Simulation
			4.1 Spatiotemporal Thinking to Optimize High-Performance Computing
			4.2 Cloud Computing to Support Large-Scale Scientific Simulation
		5. Spatiotemporal Data Modeling and Analysis
			5.1 Spatiotemporal Data Model
			5.2 Tracking Changes and Interactions
			5.3 Spatiotemporal Analytics
		6. Conclusion and Future Directions
		Acknowledgments
		References
Chapter-12---Intelligent-Automation-Tools-and-Software-Engi_2018_Federal-Dat
	12 - Intelligent Automation Tools and Software Engines for Managing Federal Agricultural Data
		1. Introduction and Motivation
		2. Related Work
			2.1 Data Validation Methods
			2.2 Data Security and Integrity Methods
		3. The Intelligent Federal Math Engine
			3.1 Inputs, Outputs, and Process of the Math Engine
			3.2 The Seven-Step Math Process
		4. Validation and Verification of Federal Agricultural Data
		5. The Intelligent Federal Data Management Tool
			5.1 Federal Tool Requirements
			5.2 Federal Tool Implementation
		6. Insights, Experimental Work, and Conclusions
			6.1 Experimental Setup and Results
			6.2 Lessons Learnt and Keys to Technical Federal Success
		References
		Further Reading
Chapter-13---Transforming-Governmental-Data-Science-Tea_2018_Federal-Data-Sc
	13 - Transforming Governmental Data Science Teams in the Future
		1. Introduction
		2. Situational Leadership
		3. Archetypes
			3.1 Mapping Archetypes to Prior Career Paths
			3.2 Archetypes in the Federal Government: An Example
			3.3 Archetypes, Risk Mitigation, and Growth
		4. Best Practices
			4.1 Creation of a Best Practice
			4.2 Intra- and Interagency Collaboration
		5. Conclusion
		Acknowledgment
		References
Afterword_2018_Federal-Data-Science
	Afterword
Index_2018_Federal-Data-Science
	Index
		A
		B
		C
		D
		E
		F
		G
		H
		I
		K
		L
		M
		N
		O
		P
		R
		S
		T
		U
		V




نظرات کاربران