ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Extrinsic Geometry of Foliations (Progress in Mathematics, 339)

دانلود کتاب هندسه بیرونی شاخ و برگ (پیشرفت در ریاضیات، 339)

Extrinsic Geometry of Foliations (Progress in Mathematics, 339)

مشخصات کتاب

Extrinsic Geometry of Foliations (Progress in Mathematics, 339)

ویرایش: 1st ed. 2021 
نویسندگان:   
سری:  
ISBN (شابک) : 3030700666, 9783030700669 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 327 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Extrinsic Geometry of Foliations (Progress in Mathematics, 339) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هندسه بیرونی شاخ و برگ (پیشرفت در ریاضیات، 339) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
List of Figures
1 Foliations and the Mixed Curvature
	1.1 Foliations and Holonomy
		1.1.1 Basic Notions
		1.1.2 Holonomy
		1.1.3 Saturated and Minimal Sets, Generic Leaves
	1.2 Metric Structures on Manifolds
		1.2.1 Riemannian Structure
		1.2.2 Finsler Structure
	1.3 Basic of the Extrinsic Geometry of Foliations
		1.3.1 Fundamental Tensors
		1.3.2 The Mixed Curvature
	1.4 The Partial Ricci Curvature
		1.4.1 Structures with Constant Partial Ricci Curvature
		1.4.2 Prescribing the Partial Ricci Curvature
		1.4.3 The Weighted Mixed Curvature
		1.4.4 Toponogov Conjecture
	1.5 Appendix
		1.5.1 Tensors and Differential Forms
		1.5.2 Frobenius Theorem
		1.5.3 The Elementary Symmetric Functions
2 Integral Formulas
	2.1 Codimension One Foliations of Riemannian Manifolds
		2.1.1 Using a Family of Diffeomorphisms
		2.1.2 Applications
			2.1.2.1 Totally Geodesic and Umbilical Foliations
			2.1.2.2 Foliations with Conformally Defined Metric
		2.1.3 Using the Divergence Theorem
	2.2 Foliations and Singularities
		2.2.1 Adapted Singular Foliations
		2.2.2 Improper Integrals
		2.2.3 Civilized Foliations
	2.3 Foliations of Arbitrary Codimension
		2.3.1 Using a Family of Diffeomorphisms
			2.3.1.1 Algebraic Preliminaries
			2.3.1.2 The Integral Formulas
		2.3.2 Using the Divergence Theorem
			2.3.2.1 The Leaf-Wise Divergence
			2.3.2.2 The Integral Formulas
			2.3.2.3 Totally Geodesic and Umbilical Foliations
		2.3.3 Splitting of Weighted Generalized Products
		2.3.4 Multi-Product Structures
	2.4 Foliations of Metric-Affine Manifolds
		2.4.1 Integral Formulas with the Mixed Scalar Curvature
		2.4.2 Integral Formula with the Ricci Curvature
		2.4.3 Splitting Results
			2.4.3.1 Harmonic Distributions
			2.4.3.2 Totally Umbilical Distributions
	2.5 Codimension One Foliations of Finsler Spaces
		2.5.1 The Generalization of (α,β)-Norm
		2.5.2 The Modified Scalar Product
		2.5.3 The Shape Operator
		2.5.4 Around the Reeb Integral Formula and Its Counterpart
3 Prescribing the Mean Curvature
	3.1 Minimal Submanifolds
	3.2 Tautness of Foliations
		3.2.1 Rummler Formula
		3.2.2 Foliation Currents
		3.2.3 Tautness
		3.2.4 Tautness and Holonomy
	3.3 Prescribing Mean Curvature in Codimension One
		3.3.1 Novikov Components
		3.3.2 Consequences of Rummler Formula
		3.3.3 Characterization of Mean Curvature Functions
	3.4 Prescribing Mean Curvature in Higher Codimension
		3.4.1 Notation
		3.4.2 Away from Singularities
		3.4.3 At Singular Sets
4 Variational Formulae
	4.1 ``Optimally Placed\'\' Distributions
	4.2 Adapted Variations of Metric
		4.2.1 Variational Formulae
		4.2.2 Euler–Lagrange Equations for the Total Smix
		4.2.3 Particular Cases
			4.2.3.1 Critical Adapted Metrics on Foliations
			4.2.3.2 Critical Adapted Metrics on Flows
			4.2.3.3 Conformal Submersions
	4.3 General Variations of Metric
		4.3.1 Variational Formulae
		4.3.2 Euler–Lagrange Equations for the Total Smix
		4.3.3 Particular Cases
			4.3.3.1 Contact Metric Structure
			4.3.3.2 Non-integrable Distributions
	4.4 Einstein–Hilbert Type Action
		4.4.1 Variable Metric
		4.4.2 The Mixed Field Equations for Space-Times
		4.4.3 Variable Connection
	4.5 The Godbillon-Vey Type Invariant
		4.5.1 Construction
		4.5.2 Variations of (ω,T) and the Index Form
		4.5.3 Integrability in Average
		4.5.4 Concordance and Homotopy
		4.5.5 Critical Foliations
		4.5.6 Around the Reinhart–Wood Formula
		4.5.7 The Bott Invariant
		4.5.8 Higher Dimensional Cases
5 Extrinsic Geometric Flows
	5.1 Prescribing the Mean Curvature Vector
		5.1.1 D\"0365D- and D-Related Geometric Quantities
		5.1.2 Existence and Uniqueness
		5.1.3 The Codimension-One Case
		5.1.4 The Doubly Twisted Products
	5.2 Flows of Metrics on Codimension-One Foliations
		5.2.1 g-Variations of Mean Curvatures
		5.2.2 The Extrinsic Geometric Flow Depending on {fm}
		5.2.3 The Generalized Companion Matrix
		5.2.4 Searching for Power Sums
		5.2.5 Existence and Uniqueness
		5.2.6 Extrinsic Geometric Flow on a Foliated Surface
	5.3 The Partial Ricci Flow
		5.3.1 Preliminaries
		5.3.2 Time-Dependent Adapted Metrics
		5.3.3 The Leafwise Laplacian of the Curvature Tensor
		5.3.4 Toward the Linearization of the Partial Ricci Flow
		5.3.5 Evolution of the Curvature Tensor
		5.3.6 Evolution of the Extrinsic Geometry
		5.3.7 Examples with (Co)Dimension One Foliations
			5.3.7.1 Totally Geodesic Foliations of Codimension One
			5.3.7.2 Foliations by Geodesics
		5.3.8 Around an Almost Contact Structure
			5.3.8.1 Weak Almost Contact Structure
			5.3.8.2 Weak Almost f-Structure
	5.4 Prescribing the Mixed Scalar Curvature
		5.4.1 Leafwise Constant Mixed Scalar Curvature
		5.4.2 D-Conformal Change of Metric
		5.4.3 D-Conformal Flows of Metrics
		5.4.4 Prescribing Smix on Warped Products
		5.4.5 Prescribing Smix by a D-Conformal Change of Metric
	5.5 The Nonlinear Heat Equation
		5.5.1 Parabolic PDE\'s
		5.5.2 Stabilization of Solutions of the Nonlinear Heat Equation
			5.5.2.1 Comparison ODE
			5.5.2.2 Case of Ψ3<0
			5.5.2.3 Case of Ψ3=0
References
Index
About the Authors




نظرات کاربران