دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Nanasaheb D. Thorat, Joanna Bauer, Rohini Kitture, Sachin Otari, Vijaykumar Jadhav سری: IPEM–IOP Series in Physics and Engineering in Medicine and Biology ISBN (شابک) : 0750324147, 9780750324144 ناشر: IOP Publishing سال نشر: 2019 تعداد صفحات: 450 [351] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 56 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب External Field and Radiation Stimulated Breast Cancer Nanotheranostics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نانوترانوستیک های سرطان سینه با میدان خارجی و تشعشع تحریک شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستمهای دارورسانی نانو که به محرکهای موضعی سلولی، مانند pH، دما، فعالسازی عامل کاهنده، یعنی آنزیمها پاسخ میدهند، میتوانند به طور موثر آزادسازی مطلوب را در حالت غیرفعال ارائه دهند، اما در درمان بیماری به دنبال ریتمهای بیولوژیکی تومور مغزی شکست میخورند. این کتاب مجموعه ای از توسعه تحقیقاتی است که توسط محققان متخصص رهبری می شود و یک ماژول مرجع واحد را ایجاد می کند.
Nano drug-delivery systems responding to cellular local stimuli, such as pH, temperature, reductive agent's activation, i.e. enzymes, could effectively provide passive-mode desirable release but fail in disease treatment following the biological rhythms of brain tumor.This book is a compilation of research development lead by expert researchers and establishes a single reference module.
PRELIMS.pdf Preface Acknowledgements Editor biographies Dr Nanasaheb D Thorat Professor Joanna Bauer Contributors Outline placeholder Dr Sachin Otari Dr Rakesh Patil Dr Madhuri P Anuje Dr Abdul K Parchur Dr Vijaykumar Jadhav Dr Nitesh Kumar Ahmaduddin Khan Dr Niroj Kumar Sahu Dr Rohini D Kitture Dr Arpita Pandey Tiwari Dr Sonali S Rohiwal CH001.pdf Chapter 1 Introduction to external field stimulation modalities 1.1 Introduction 1.2 External field stimulation modalities 1.3 External field stimulation modalities for cancer theranostics 1.3.1 Magnetically stimulated cancer theranostics 1.3.2 Light stimulated cancer theranostics 1.3.3 Ultrasound stimulated cancer theranostics 1.3.4 Radiation (x-ray) stimulated cancer theranostics 1.4 Conclusion Acknowledgement References CH002.pdf Chapter 2 Physically responsive nanostructures in breast cancer theranostics 2.1 Introduction 2.2 Light-responsive systems 2.2.1 Photodynamic therapy 2.2.2 Photothermal therapy (PTT) 2.3 Magnetically responsive systems 2.3.1 Magnetic resonance imaging 2.3.2 Magnetic hyperthermia and targeted drug delivery system 2.4 Ultrasonic responsive system 2.5 Ionizing radiation triggered system 2.6 Future perspective References CH003.pdf Chapter 3 Externally/physically stimulated breast cancer nanomedicine 3.1 Introduction 3.2 External/physical nanomedicine for breast cancers 3.2.1 Magnetic field 3.2.2 Ultrasound field 3.2.3 Radiofrequency mediated hyperthermia 3.2.4 X-ray irradiation 3.2.5 Phototriggered theranostics 3.3 Conclusion and future scope Acknowledgments References CH004.pdf Chapter 4 Magnetically stimulated breast cancer nanomedicines 4.1 Preface 4.2 Introduction 4.3 Tumor microenvironment and metastasis 4.4 Current trends and challenges in breast cancer treatment 4.5 Cancer nanomedicines 4.6 Magnetic nanoparticles 4.7 Magnetic field-induced breast tumor targeting 4.8 Mechanism of magnetic targeting 4.9 Magnetic hyperthermia in breast cancer 4.10 Mechanism of hyperthermia 4.11 Conclusion and prospective References CH005.pdf Chapter 5 Magneto-plasmonic stimulated breast cancer nanomedicine 5.1 Introduction 5.2 Breast cancer and its causes 5.3 Existing breast cancer therapies 5.3.1 Surgical therapy 5.3.2 Chemotherapy 5.3.3 Endocrine therapy 5.3.4 Radiotherapy 5.4 Nanomaterial aspect of breast cancer therapy 5.4.1 Principle of magnetic hyperthermia 5.4.2 Principle of photothermal therapy 5.4.3 Nanomaterials used for MHT and PTT 5.4.4 Combination therapy 5.4.5 Synthesis and functionalization strategy of nanomaterial for therapeutic application 5.5 Mechanism of cellular uptake and accumulation of NPs in tumors 5.6 Current status of clinical trials of nanomedicine based on MHT and PTT 5.7 Toxicity of nanomaterials 5.8 Conclusion Acknowledgments References CH006.pdf Chapter 6 Radiation and ultrasound stimulated breast cancer nanomedicine 6.1 Introduction 6.2 Radiation therapy 6.2.1 Nanoparticle mediated radiation therapy 6.3 Ultrasound therapy 6.3.1 Nanoparticles mediated ultrasound therapy 6.4 Toxicity concerns 6.5 Conclusion References CH007.pdf Chapter 7 Radiotherapy and breast cancer nanomedicine 7.1 Radiotherapy 7.1.1 History of radiotherapy 7.1.2 Mechanism of action of radiotherapy 7.1.3 Classification of radiotherapy 7.1.4 Radiation therapy versus radioisotope therapy 7.1.5 Nanoparticle mediated radionuclide therapy 7.1.6 Nanoparticles as radiosensitizers 7.2 Cancers and their staging based treatment modality 7.3 Cancer nanomedicine 7.3.1 Physiochemical characteristics of NPs influencing the delivery 7.3.2 Nanomedicine in clinical cancer care 7.4 Breast cancer 7.4.1 Breast anatomy and cancer 7.4.2 Classification of breast cancer—noninvasive and invasive 7.4.3 Conventional modalities for treating breast cancer 7.4.4 Challenges in radiotherapy and drug delivery 7.5 Breast cancer nanomedicine 7.5.1 Latest trend for the development of nanomedicine based breast cancer treatment 7.5.2 Drug delivery systems for breast cancer 7.5.3 Updated status of nanomedicine application for breast cancer treatment 7.6 Conclusion References CH008.pdf Chapter 8 Ionizing radiation stimulated breast cancer nanomedicine 8.1 Introduction 8.2 X-rays and γ-rays radiation therapy 8.2.1 Metal based nanoparticles 8.2.2 Other high-Z-elements-based nanoparticles 8.2.3 Non-high-Z-elements 8.3 Nanomaterials delivering radioisotope for internal radioisotope therapy 8.4 Combined therapy 8.5 Conclusions References CH009.pdf Chapter 9 Strengths and limitations of physical stimulus in breast cancer nanomedicine 9.1 Introduction 9.1.1 Cancer 9.1.2 Breast cancer 9.1.3 Nanomedicine 9.1.4 Nanomedicine for cancer treatment 9.2 Nanomedicine for tumor targeting 9.2.1 Active targeting 9.2.2 Passive targeting 9.3 Stimuli responsive/triggered nanomedicine for cancer theranostics 9.3.1 Endogenous/internal stimuli responsive nanomedicine 9.3.2 Exogenous/external stimuli responsive nanomedicine 9.4 Strengths and limitations of physical stimulus in breast cancer nanomedicine 9.4.1 Light triggered nanomedicine in breast cancer therapy 9.4.2 Ultrasound triggered nanomedicine in breast cancer therapy 9.4.3 Magnetic field triggered nanomedicine in breast cancer therapy 9.4.4 Radiation triggered nanomedicine in breast cancer therapy 9.4.5 Local hyperthermia triggered nanomedicine in breast cancer therapy 9.4.6 Radiofrequency triggered nanomedicine in breast cancer therapy 9.5 Discussion and general comment Acknowledgment References CH010.pdf Chapter 10 Pharmacokinetics of nanomedicine for breast cancer 10.1 Introduction 10.2 Nanobiotechnology-based platforms for breast cancer therapy 10.3 Types of nanoformulations (nanomedicines) for breast cancer therapy 10.4 Physicochemical properties of nanomedicines and their effects in pharmacokinetics and pharmacodynamics 10.4.1 Particle surface area and size of the nanomedicines 10.4.2 Shape and aspect ratio of nanomedicines 10.4.3 Surface charge of nanomedicines 10.4.4 Composition and crystalline structure of nanomedicines 10.4.5 Aggregation and concentration of nanomedicines 10.4.6 Surface properties of nanomedicines 10.4.7 Solvents/media in nanomedicines 10.5 Selection criteria for nano drug delivery system 10.6 Arsenal for drug delivery 10.7 Importance of nanomedicines in pharmacokinetics of breast cancer therapy 10.8 Pharmacokinetics of nanomedicines for breast cancer therapy 10.8.1 Pharmacokinetics of liposomes 10.8.2 Pharmacokinetics of polymeric nanoparticle system 10.8.3 Pharmacokinetics of Doxil 10.8.4 Pharmacokinetics of Myocet 10.8.5 Pharmacokinetics of Genoxol-PM 10.8.6 Pharmacokinetics of nanoxel 10.8.7 Pharmacokinetics of Rexin-G 10.8.8 Pharmacokinetics of Kadcyla 10.8.9 Pharmacokinetics of Abraxane 10.9 Novel targeting approaches for improved pharmacokinetic and pharmacodynamic features for breast cancer therapy 10.9.1 Her2 targeting approach for her2 positive breast cancer 10.9.2 AAV2 receptor targeting approach for triple negative breast cancer 10.9.3 Gene targeting approach for breast cancer 10.9.4 Photothermal ablation (PTA) for breast cancer 10.10 Advantages of nanomedicine in breast cancer therapy 10.11 Potential pharmacokinetic benefits of nanomedicine 10.12 Conclusion References CH011.pdf Chapter 11 Clinical and preclinical trials of breast cancer 11.1 Introduction 11.2 Biology of breast cancer metastasis 11.3 Nanomaterials used for breast cancer 11.3.1 Lipid based nanocarrier 11.3.2 Polymeric NPs 11.3.3 Inorganic nanoparticles 11.4 Concept of preclinical trials 11.4.1 Strategies and preclinical animal models 11.4.2 Challenges 11.5 Concept of clinical trials 11.5.1 Types 11.5.2 Challenges 11.6 Perspective Acknowledgement References CH012.pdf Chapter 12 Biological systems: a challenge for physical stimulation of cancer nanomedicine 12.1 Introduction 12.2 Commonly used physical stimulators in cancer nanomedicine 12.2.1 Photoresponsive 12.2.2 Ultrasound-triggered theranostics 12.2.3 Electro-thermally triggered theranostics 12.2.4 Magneto-thermally triggered theranostics 12.2.5 Additional remotely triggered treatments 12.2.6 Radiofrequency triggered 12.3 Challenges of current cancer nanomedicine 12.3.1 Toxicity of nanomaterials 12.3.2 Mass transport 12.3.3 Complexity of nanopharmaceuticals, characterization, stability and storage 12.3.4 Economic considerations 12.4 Conclusions and future directions References