ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Extending the Life of Reservoirs: Sustainable Sediment Management for RoR Hydropower and Dams (Directions in Development - Energy and Mining): ... for Run-Of-River Hydropower and Dams

دانلود کتاب گسترش عمر مخازن: مدیریت رسوب پایدار برای نیروگاه های آبی و سدهای RoR (جهت های توسعه - انرژی و معدن): ... برای برق آبی و سدهای جاری رودخانه

Extending the Life of Reservoirs: Sustainable Sediment Management for RoR Hydropower and Dams (Directions in Development - Energy and Mining): ... for Run-Of-River Hydropower and Dams

مشخصات کتاب

Extending the Life of Reservoirs: Sustainable Sediment Management for RoR Hydropower and Dams (Directions in Development - Energy and Mining): ... for Run-Of-River Hydropower and Dams

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781464808388, 1464808384 
ناشر: World Bank Publications 
سال نشر: 2016 
تعداد صفحات: 192
[191] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Extending the Life of Reservoirs: Sustainable Sediment Management for RoR Hydropower and Dams (Directions in Development - Energy and Mining): ... for Run-Of-River Hydropower and Dams به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب گسترش عمر مخازن: مدیریت رسوب پایدار برای نیروگاه های آبی و سدهای RoR (جهت های توسعه - انرژی و معدن): ... برای برق آبی و سدهای جاری رودخانه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب گسترش عمر مخازن: مدیریت رسوب پایدار برای نیروگاه های آبی و سدهای RoR (جهت های توسعه - انرژی و معدن): ... برای برق آبی و سدهای جاری رودخانه

برگزیده آثار جورج آناندیل و گریگوری موریس.


توضیحاتی درمورد کتاب به خارجی

Selected works of George Annandale and Gregory Morris.



فهرست مطالب

Front Cover
Contents
Foreword
About the Authors
Abbreviations
Chapter 1 Purpose and Application of This Book
	Introduction
	The World Bank’s Role in Sustainable Infrastructure Activities
	The Importance of Sediment Management for Ensuring the Sustainability of Reservoir and Run-of-River Projects
	Solutions and Recommendations for Successful Sediment Management
	Purpose, Uses, and Organization of This Book
	Notes
	References
Chapter 2 Climate Change, Sediment Management, and Sustainable Development
	Introduction
	The Dual Nature of Reservoir Storage
	Shifting Paradigms
	Economic Analysis and Sustainable Development
	Summary
	Notes
	References
Chapter 3 Overview of Sedimentation Issues
	Introduction
	The Importance of Storage
	Sedimentation Impacts Upstream of a Dam
	Sedimentation Impacts Downstream of a Dam
	Importance of Sediment Management
	Severity of Storage Loss to Sedimentation
	Sedimentation and Climate Change
	Notes
	References
Chapter 4 Sediment Yield
	Introduction
	Global Sediment Yield: Spatial Variability
	Sediment Sources
	Measuring Sediment Yield
	Sediment Yield Estimation
	Note
	References
Chapter 5 Patterns of Sediment Transport and Deposition
	Introduction
	Sediment Transport in Reservoirs
	Trap Efficiency
	Spatial Distribution of Deposited Sediment
	Empirical Techniques
	Computer Simulation
	Particle Size Distributions of Deposited Sediment
	Temporal Aspects of Sediment Deposition
	Note
	References
Chapter 6 Sediment Monitoring
	Introduction
	Sampling for Suspended Sediment Load
	Sediment Rating Curves
	Bed Material Load
	Bathymetric Mapping of Sedimentation
	Sediment Bulk Density
	Sediment Sampling of Grain Size Distribution
	Summary
	References
Chapter 7 Sediment Management Techniques
	Introduction
	Reducing Upstream Sediment Yield
	Sediment Routing
	Redistributing or Removing Sediment Deposits
	Management Options and Reservoir Capacity
	Adaptive Strategies
	Sediment Modeling Approaches
	References
Chapter 8 Sediment Management at Run-of-River Headworks
	Introduction
	Configurations of ROR Hydropower Plants and Objectives of Headworks Design
	Fluvial Morphology and Site Selection
	Types of Intakes
	Sediment Management at Headworks
	Removal of Sand from Diverted Water
	Monitoring and Sediment-Guided Operation
	Notes
	References
Chapter 9 Reservoir Sustainability Best Practices Guidance
	Introduction
	Sustainable Reservoirs and Hydropower
	Limitations of Sediment Management
	Planning and Design Considerations
	Monitoring Sediment Management Performance
	End-of-Life Scenarios
	Note
	References
Appendix A Checklist for Sediment Management
	Sediment Yield
	Sedimentation Patterns and Impacts
	Sustainable Sediment Management Measures
	Development Paradigm
Boxes
	Box 2.1 Sediment Management in the Dasu Hydropower Project, Pakistan
	Box 2.2 A Note on Terminology
	Box 2.3 Tarbela Dam, Pakistan
Figures
	Figure 2.1 Active Storage Features of Run-of-River and Storage Reservoirs
	Figure 2.2 Design Life Approach to Infrastructure Design
	Figure 2.3 The Life-Cycle Management Approach
	Figure 2.4 Standard Approach to Economic Analysis of Dams and Reservoirs, PD Soedirman Reservoir, Indonesia
	Figure 2.5 Life-Cycle Approach Reflecting Sediment Management Investments
	Figure 3.1 Relationship between Yield and Hydrologic Variability at 99 Percent Reliability
	Figure 3.2 Storage Loss in Active and Dead Storage Zones Due to Reservoir Sedimentation
	Figure 3.3 Changes in Water Use Efficiency Relative to Sedimentation in the Active Storage of a Reservoir over Four Decades
	Figure 3.4 Changes in Water Use Efficiency Relative to Sedimentation in the Active Storages of Reservoirs
	Figure 3.5 Relationship between Dimensionless Yield and Dimensionless Reservoir Storage for Varying Hydrologic Variability
	Figure 3.6 Positive Effect on Water Supply of Reservoir Sediment Management
	Figure 3.7 Increased Flood Elevations Caused by Sediment Deposition
	Figure 3.8 Erosion and Degradation of Downstream Rivers Due to “Sediment Hungry” Water
	Figure 3.9 Relationship between Annual Average Flood Control Benefit and Flood Control Storage for Three Gorges Dam, China
	Figure 3.10 Cumulative Yield as a Function of Unit Cost for All Potential Dam and Reservoir Sites in Kenya
	Figure 3.11 Adverse Effect of Developing Dams and Their Reservoirs in a Nonsustainable Manner
	Figure 3.12 Long-Term Reduction in Reservoir Storage Space from Reservoir Sedimentation
	Figure 3.13 The Effect of Successful Reservoir Sediment Management
	Figure 3.14 Global Population Growth and Reservoir Storage Volume
	Figure 3.15 Net Global Reservoir Storage Volume, Accounting for Storage Loss from Reservoir Sedimentation
	Figure 4.1 Specific Sediment Yield as a Function of Effective Precipitation and Terrain and as a Function of Mean Annual Precipitation and Geology
	Figure 4.2 Approximate Ranges of Specific Sediment Yield for Various Regions in the United States
	Figure 4.3 Sediment Delivery Ratio as a Function of Drainage Area
	Figure 4.4 Ranked Cumulative Sediment Yield from Río Tanamá, Puerto Rico, as a Function of Time
	Figure 4.5 Changes in the Rate of Sediment Discharge in the Orange River, South Africa, 1929–69
	Figure 5.1 Brune Curve for Estimating the Trap Efficiency of Reservoirs
	Figure 5.2 Churchill Curve Modified by Roberts (1982) as Reported in Annandale (1987)
	Figure 5.3 Alternative Sediment Trap Efficiency Estimates for a Reservoir in Costa Rica
	Figure 5.4 Typical Shape of Deposited Sediment in a Reservoir
	Figure 5.5 Differing Shapes of Deposited Sediment in Reservoirs
	Figure 5.6 Active and Dead Reservoir Storage
	Figure 5.7 Relationship between the Topset Slope of a Delta and the Original Riverbed Slope for Existing Reservoirs
	Figure 5.8 Relationship between Topset Sediment Slope and the Shape Factor
	Figure 5.9 Sediment Distribution in Four Reservoir Types
	Figure 5.10 Dimensionless Cumulative Mass Curve Explaining Distribution of Deposited Sediment in a Reservoir
	Figure 5.11 Distribution of Deposited Sediment above Full Supply Level in a Reservoir
	Figure 5.12 Schematization of Reservoir Compartments Used to Estimate Distribution of Deposited Sediment
	Figure 5.13 Particle Size Distributions from Four Locations in Sakuma Reservoir after 24 Years of Operation
	Figure 5.14 Change in Reservoir Storage Volume Due to Reservoir Sedimentation for Welbedacht Dam, South Africa, from Commissioning to 2003
	Figure 6.1 Loss of Storage Capacity in Kulekhani Reservoir, Nepal, Resulting from the Extreme Monsoon of 1993
	Figure 6.2 Conceptual Diagram Showing Use of Two Rating Relationships
	Figure 6.3 Spurious Correlation Caused by Incorporating Discharge on Both Graph Axes
	Figure 6.4 Example of Error Introduced in Rating Equation Using a Simple Spreadsheet “Trendline” Equation
	Figure 6.5 Elevation-Storage Graph: Original Relationship and Shift in Curve as a Result of Sedimentation
	Figure 6.6 Longitudinal Thalweg Profiles of Sediment Deposits in Peligre Dam, Haiti
	Figure 6.7 Sediment Compaction over Time
	Figure 7.1 Classification of Sediment Management Alternatives
	Figure 7.2 Conceptual Longitudinal Profile of Gully Erosion
	Figure 7.3 Lateral Migration of a Natural Stream Channel
	Figure 7.4 Basic Features of Conventional Onstream Reservoir Compared with Offstream Reservoir
	Figure 7.5 Alternatives for Bypass of Sediment-Laden Floods
	Figure 7.6 Sediment Sluicing in a Storage Reservoir during a Short-Duration Flood Event
	Figure 7.7 Passage of a Turbid Density Current through a Reservoir
	Figure 7.8 Turbidity Siphon Configurations for Releasing Turbid Density Currents
	Figure 7.9 Delta Advance Depending on Reservoir Operational Levels
	Figure 7.10 Schematic of Dredging System Components
	Figure 7.11 Localized Scour Cone Created by Pressure Flushing
	Figure 7.12 Flushing Event and Quality of Discharged Water
	Figure 7.13 Cross-Sections of Flushing Channel
	Figure 7.14 Applicability of Sediment Management Techniques Based on Hydrologic Capacity and Sediment Loading
	Figure 7.15 Allocation of Flood Control and Conservation Pools in a Multipurpose Reservoir
	Figure 8.1 Principal Components of Run-of-River Headworks Relevant to Sediment Management
	Figure 8.2 Performance Standards for Run-of-River Headworks
	Figure 8.3 Plunging Flow at Exterior of River Meander
	Figure 8.4 Idealized Schematic of River Meanders and Suitability for Intake Location
	Figure 8.5 Conceptual Schematic of Frontal Intake Configuration
	Figure 8.6 Conceptual Configuration of Bottom Intake
	Figure 8.7 Arrangement of Offstream Pondage
	Figure 8.8 Undesirable Hydraulic Geometry Observed in Sedimentation Basins
	Figure 8.9 Decrease in Sediment Removal Efficiency over Time at a Run-of-River Hydropower Plant Correlated to Operator Change in 2010
	Figure 8.10 Cumulative Daily Sand Load on Turbines at Kali Gandaki Power Plant, Nepal
	Figure 8.11 Efficiency Measurements at Jhimruk Hydropower Plant, Nepal
	Figure 9.1 Designated Beneficial Uses of Reservoirs Worldwide
	Figure 9.2 Contrasting Design Life and Sustainable Use Paradigms
	Figure 9.3 Major Factors Influencing Sustainable Use Strategies
Maps
	Map 3.1 World Regions Where Multiple-Year Droughts Occur
	Map 4.1 Global Specific Sediment Yield Map
Photos
	Photo 3.1 Dewatered Desilting Chambers at Nathpa Jhakri Hydropower Plant, 2010
	Photo 3.2 Abrasion of Wicket Gates at Nathpa Jhakri Plant after Five Months of Operation
	Photo 3.3 Phragmites Established on Deposited Sediment in Lewis and Clark Lake
	Photo 3.4 Impact of Reservoir Sedimentation at the Mouth of the Tenryu River, Japan
	Photo 4.1 Erosion: Sheet Flow, Rill Erosion, Gully Erosion
	Photo 6.1 Fully Sedimented Coamo Reservoir in Puerto Rico, 1995
	Photo 6.2 US D-74 Isokinetic Suspended Sediment Sampler
	Photo 6.3 Portable Bathymetric Equipment Used for Reservoir Surveys
	Photo 6.4 Portable Vibracore Equipment for Sampling of Reservoir Sediments
	Photo 7.1 Gabion Check Dam, La Paz, Bolivia, Which Failed after Less Than Five Years
	Photo 7.2 Sabo Dam above the City of Quito, Ecuador
	Photo 7.3 Dry Excavation at the Pellejas Hydropower Diversion Dam in Puerto Rico
	Photo 7.4 Physical Model of Kali Gandaki Dam, Intake and Sedimentation Basin
	Photo 8.1 Boulder-Strewn Watercourse Resulting from a Debris Flow Event at the Intake to the 30 MW Jagran Power Station in Pakistan-Administered Kashmir
	Photo 8.2 Abrasion Damage by Bed Load
	Photo 8.3 Flow Tranquilizer
	Photo 8.4 Sedimentation Basin after Emptying for Cleanout, Looking Downstream
Tables
	Table B2.1.1 Economic Rate of Return (ERR) for Dasu Project Phase I
	Table 2.1 Recommended Declining Discount Rate Sequence
	Table 2.2 The Effect of Alternative Discount Rates on PB Soedirman Project Net Present Value Using the Conventional Design Life Approach
	Table 2.3 The Effect of Alternative Discount Rates and Sediment Management on Net Present Value of PB Soedirman Project
	Table 4.1 Sediment Yield from the Continents to the Oceans
	Table 4.2 Average Sediment Discharge (Yield) for 10 Large Rivers
	Table 4.3 Increased Sediment Yield in a 40-Hectare Mountain Watershed
	Table 4.4 Potential Error at 5 Percent Level of Significance for Various Sampling Sizes (Years) as a Function of Annual Coefficient of Variation
	Table 6.1 Values of Initial Bulk Density for Use in Lara-Pemberton Equation
	Table 7.1 Operational Strategy for Sediment Bypass Tunnel at Run-of-River Hydropower Dam, Using Sedimentation Headpond Instead of Desanding Basin
	Table 8.1 Operational Ranges Characteristic of Run-of-River Power Plants
	Table 8.2 Value of Storage for Daily Peaking Power as a Function of Power Head




نظرات کاربران