دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jennifer Brooks (Author)
سری:
ISBN (شابک) : 9781498704496, 9781315321172
ناشر: Chapman and Hall/CRC
سال نشر: 2016
تعداد صفحات: 300
زبان:
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
کلمات کلیدی مربوط به کتاب کاوش در بی نهایت: مقدمه ای بر اثبات و تحلیل: ریاضیات و آمار، ریاضیات پیشرفته، تجزیه و تحلیل - ریاضیات، آنالیز ریاضی، ریاضیات گسسته، نظریه مجموعه ها
در صورت تبدیل فایل کتاب Exploring the Infinite: An Introduction to Proof and Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاوش در بی نهایت: مقدمه ای بر اثبات و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این یک کتاب درسی برای یک دوره مقدماتی در تجزیه و تحلیل، ترکیبی از موضوعات از یک دوره انتقال است. در برخی مدارس، یک دوره انتقالی در طول یک یا دو ترم برای معرفی موضوعاتی از تحلیل واقعی ترکیب میشود. این به دانش آموزان اجازه می دهد تا رویکرد تدریجی تری به موضوعات دشوار تجزیه و تحلیل داشته باشند. با شروع منطق و مجموعه ها، این متن به تدریج سطح پیچیدگی دانش آموزان را که از حساب دیفرانسیل و انتگرال بیرون می آیند را بالا می برد و به مباحث تجزیه و تحلیل می رود.
This is a textbook for an introductory course in analysis, combining topics from a transition course. At some schools, a transition course is combined over one or two semesters to introduce topics from real analysis. This allows students a more gradual approach to the difficult topics of analysis. Beginning with logic and sets, this text gradually raises the sophistication level of students coming out of calculus and proceeds into analysis topics.
Fundamentals of Abstract Mathematics
Basic Notions
A First Look at Some Familiar Number Systems
Integers and natural numbers
Rational numbers and real numbers
Inequalities
A First Look at Sets and Functions
Sets, elements, and subsets
Operations with sets
Special subsets of R: intervals
Functions
Mathematical Induction
First Examples
Defining sequences through a formula for the n-th term
Defining sequences recursively
First Programs
First Proofs: The Principle of Mathematical Induction
Strong Induction
The Well-Ordering Principle and Induction
Basic Logic and Proof Techniques
Logical Statements and Truth Table
Statements and their negations
Combining statements
Implications
Quantified Statements and Their Negations
Writing implications as quanti ed statements
Proof Techniques
Direct Proof
Proof by contradiction
Proof by contraposition
The art of the counterexample
Sets, Relations, and Functions
Sets
Relations
The definition
Order Relations
Equivalence Relations
Functions
Images and pre-images
Injections, surjections, and bijections
Compositions of functions
Inverse Functions
Elementary Discrete Mathematics
Basic Principles of Combinatorics
The Addition and Multiplication Principles
Permutations and combinations
Combinatorial identities
Linear Recurrence Relations
An example
General results
Analysis of Algorithms
Some simple algorithms
Omicron, Omega and Theta notation
Analysis of the binary search algorithm
Number Systems and Algebraic Structures
Representations of Natural Numbers
Developing an algorithm to convert a number from base
10 to base 2.
Proof of the existence and uniqueness of the base b representation of an element of N
Integers and Divisibility
Modular Arithmetic
Definition of congruence and basic properties
Congruence classes
Operations on congruence classes
The Rational Numbers
Algebraic Structures
Binary Operations
Groups
Rings and fields
Cardinality
The Definition
Finite Sets Revisited
Countably Infinite Sets
Uncountable Sets
Foundations of Analysis
Sequences of Real Numbers
The Limit of a Sequence
Numerical and graphical exploration
The precise de nition of a limit
Properties of Limits
Cauchy Sequences
Showing that a sequence is Cauchy
Showing that a sequence is divergent
Properties of Cauchy sequences
A Closer Look at the Real Number System
R as a Complete Ordered Field
Completeness
Why Q is not complete
Algorithms for approximating square root 2
Construction of R
An equivalence relation on Cauchy sequences of rational
numbers
Operations on R
Verifying the field axioms
Defining order
Sequences of real numbers and completeness
Series, Part 1
Basic Notions
Exploring the sequence of partial sums graphically and
numerically
Basic properties of convergent series
Series that diverge slowly: The harmonic series
Infinite geometric series
Tests for Convergence of Series
Representations of real numbers
Base 10 representation
Base 10 representations of rational numbers
Representations in other bases
The Structure of the Real Line
Basic Notions from Topology
Open and closed sets
Accumulation points of sets
Compact sets
Subsequences and limit points
First definition of compactness
The Heine-Borel Property
A First Glimpse at the Notion of Measure
Measuring intervals
Measure zero
The Cantor set
Continuous Functions
Sequential Continuity
Exploring sequential continuity graphically and numerically
Proving that a function is continuous
Proving that a function is discontinuous
First results
Related Notions
The epsilon-delta□ condition
Uniform continuity
The limit of a function
Important Theorems
The Intermediate Value Theorem
Developing a root-finding algorithm from the proof of the
IVT
Continuous functions on compact intervals
Differentiation
Definition and First Examples
Properties of Differentiable Functions and Rules for Differentiation
Applications of the Derivative
Series, Part 2
Absolutely and Conditionally Convergent Series
The rst example
Summation by Parts and the Alternating Series Test
Basic facts about conditionally convergent series
Rearrangements
Rearrangements and non-negative series
Using Python to explore the alternating harmonic series
A general theorem
A Very Short Course on Python
Getting Stated
Why Python?
Python versions 2 and 3
Installation and Requirements
Integrated Development Environments (IDEs)
Python Basics
Exploring in the Python Console
Your First Programs
Good Programming Practice
Lists and strings
if . . . else structures and comparison operators
Loop structures
Functions
Recursion