دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: R. Lakshmana Kumar (editor), R. Indrakumari (editor), B. Balamurugan (editor), Achyut Shankar (editor) سری: ISBN (شابک) : 0367506912, 9780367506919 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 307 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Exploratory Data Analytics for Healthcare (Innovations in Big Data and Machine Learning) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های اکتشافی برای مراقبت های بهداشتی (نوآوری در داده های بزرگ و یادگیری ماشین) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل داده های اکتشافی به شناسایی الگوهای طبیعی پنهان در داده ها کمک می کند. این کتاب ابزارهای تولید فرضیه را با تجسم دادهها از طریق نمایش گرافیکی توصیف میکند و بینش مفاهیم پیشرفته تحلیلی را به روشی آسان ارائه میکند. این کتاب به گردش کامل فناوریهای تجسم دادهها میپردازد، مفاهیم پایه و سطح بالا علوم و مهندسی کامپیوتر در علم پزشکی را بررسی میکند و مروری بر حوزههای تحقیقات علمی بالینی ارائه میکند که تجهیزات تشخیص هوشمند را قادر میسازد. در مورد تکنیکها و ابزارهای مورد استفاده برای کشف حجم زیادی از دادههای پزشکی بحث میکند و مطالعات موردی را ارائه میدهد که بر ارتقای فنآوری نوآورانه و چالشهایی که امروزه با آن مواجه هستیم، تمرکز دارد. مخاطبان اصلی کتاب شامل متخصصان، محققین، فارغ التحصیلان، طراحان، کارشناسان، پزشکان و مهندسانی هستند که در این زمینه تحقیق می کنند.
Exploratory data analysis helps to recognize natural patterns hidden in the data. This book describes the tools for hypothesis generation by visualizing data through graphical representation and provides insight into advanced analytics concepts in an easy way. The book addresses the complete data visualization technologies workflow, explores basic and high-level concepts of computer science and engineering in medical science, and provides an overview of the clinical scientific research areas that enables smart diagnosis equipment. It will discuss techniques and tools used to explore large volumes of medical data and offers case studies that focus on the innovative technological upgradation and challenges faced today. The primary audience for the book includes specialists, researchers, graduates, designers, experts, physicians, and engineers who are doing research in this domain.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Visual Analytics: Scopes and Challenges 1.1 Introduction: Concept of Visual Analytics 1.1.1 Process of Visual Analytics 1.1.2 Need and Benefits of VA in Healthcare 1.2 VA Technologies and Tools 1.2.1 General Features of Visual Analytics Tools 1.2.1.1 Data Visualization 1.2.1.2 Dashboards 1.2.1.3 Integration with Multiple Data Sources 1.2.1.4 Collaboration 1.2.2 Visual Analytics Tools 1.3 Scope of VA in Different Sectors of Medical Science 1.4 Challenges to Face 1.5 Conclusion References Chapter 2 Statistical Methods and Applications: A Comprehensive Reference for the Healthcare Industry 2.1 Introduction 2.2 Conceptual Framework of the Methodology 2.2.1 Outlier Definition 2.2.2 Overview of Techniques and Motivation for Outlier Detection and Handling 2.2.2.1 Z-Score or Extreme Value Analysis (Parametric) 2.2.2.2 Probabilistic and Statistical Modeling (Parametric) 2.2.2.3 Linear Regression Models (PCA, LMS) 2.2.2.4 Proximity-Based Models (Non-Parametric) 2.3 Definition of Clustering 2.3.1 Density-Based Methods 2.3.2 Distributed Based Algorithms 2.3.3 Centroid-Based Algorithms 2.3.4 Connectivity-Based Algorithms 2.3.5 Density-Based Algorithms 2.3.6 Subspace Algorithms 2.4 How Clustering Concepts Aid Outlier Detection and Eradication 2.5 Definition of Concept Hierarchy 2.5.1 Binning 2.5.2 Histogram Analysis 2.5.3 Clustering Analysis 2.5.4 Entropy-Based Discretization 2.5.5 Segmentation via “Natural Partitioning” 2.6 Purpose of the Study 2.7 Research Questions 2.8 What Are the Causes and Challenges of Imbalanced Classification? 2.9 What Are the Issues That Occur While Analyzing Active Datasets of Epidemics? 2.10 What Is Active Learning? 2.11 What Are the Challenges Faced in Data Mining? 2.12 Definition of Terms, Keywords, Algorithms, and Methodologies 2.13 Applications and Future Scope of the Study 2.13.1 Credit Card Fraud Detection 2.13.2 Mobile Fraud Detection 2.13.3 Insurance Claim Fraud Detection 2.13.4 Insider Trading Detection 2.13.5 Medical Public Health Outlier 2.13.6 Industrial Damage Detection 2.13.7 Image Processing 2.13.8 Outlier Detection in Text Data 2.13.9 Sensor Networks 2.13.10 Miscellaneous Domains 2.14 Conclusions References Chapter 3 Machine Learning Algorithms for Healthcare Data Analytics 3.1 Introduction 3.2 Types of Machine Learning Algorithms 3.2.1 Supervised Learning 3.2.1.1 Algorithms for Supervised Machine Learning 3.2.2 Unsupervised Learning 3.2.3 Semi-Supervised Learning 3.2.4 Reinforcement Learning 3.2.5 Association Rules 3.3 Models of Machine Learning 3.3.1 Support Vector Machine 3.3.2 Bayesian Networks 3.3.3 Artificial Neural Networks 3.3.3.1 Components of ANN Are 3.3.4 Regression Analysis 3.3.4.1 Method 3.4 Application of Machine Learning in Various Fields 3.4.1 Medical Diagnosis 3.4.2 Image Recognition Process 3.4.3 Speech Recognition 3.4.4 Predicting Traffic 3.4.5 Spam and Malware Filtering in Email 3.5 Healthcare Data Analytics with Machine Learning 3.5.1 Natural Language Processing 3.5.1.1 Introduction 3.5.1.2 Important Use Cases of NLP Are 3.5.1.3 Implementing Predictive Analytics in Healthcare 3.5.1.4 Workflow of NLP 3.6 Case Studies Based on EHR 3.6.1 Introduction to EHR 3.6.2 Schemes 3.7 Issues and Challenges 3.8 Conclusions References Chapter 4 A Review of Challenges and Opportunities in Machine Learning for Healthcare 4.1 Introduction 4.2 Identifying Disease and Diagnosis 4.2.1 Medical Imaging Diagnosis 4.2.2 Robotic Surgery 4.2.3 Personalized Medicine 4.2.4 Drug Development 4.2.5 Destructive Testing 4.2.6 Non-Destructive Testing 4.3 Supervised Learning Techniques 4.3.1 Decision Tree Methods 4.3.2 Support Vector Machine 4.4 Electrocardiography (ECG) Tool for Evaluation 4.5 Feature Extraction 4.5.1 MSE Loss 4.6 Spatial (SA) and Channel-Wise Attention (CA) 4.7 Addressing a Hierarchy of Healthcare Opportunities 4.8 Clinical Task Automation: Automating Clinical Tasks during Diagnosis and Treatment 4.9 Clinical Support and Augmentation: Optimizing clinical Decision and Practice Support 4.10 Opportunities for New Research in Machine Learning 4.11 Accommodating Data and Practice Non-stationary in Learning and Deployment 4.12 Personalized Medicine 4.13 Automatic Treatment or Recommendation 4.14 Automatic Care or Guidance 4.15 Error Potential as Applicable to AI and ML to Healthcare 4.16 Health Data Requires a High Level of Customization 4.17 Generation of Design ECGs 4.18 Conclusion References Chapter 5 Digitalizing the Health Records Using Machine Learning Algorithms 5.1 Introduction 5.2 Literature Study 5.3 Background 5.4 Working Principle of Digitalization 5.5 Case Study on Digitalization Method 5.6 Case Study with Image Database 5.7 Experimental Example 5.8 Data Flow in Machine Learning 5.9 Future Trends and Conclusion References Chapter 6 Interactive Visualization for Understanding and Analyzing Medical Data 6.1 Introduction 6.2 Sources of Medical Data 6.3 Types of Medical Data 6.4 Interactive Visualization Process of Medical Data 6.4.1 Image Analysis 6.4.1.1 Data Acquisition 6.4.1.2 Data Transfer and Storage 6.4.1.3 Image Enhancement 6.4.1.4 Image Segmentation 6.4.1.5 Image Registration 6.4.1.6 Visualization 6.4.2 Unstructured Text Analysis 6.4.3 Signal Data Analysis 6.5 Visualization Methods 6.6 Conclusion References Chapter 7 Heart Disease Prediction Using Tableau 7.1 Introduction 7.2 Types of Heart Disease 7.2.1 Congenital Heart Disease 7.2.1.1 Causes and Symptoms 7.2.2 Coronary Heart Disease 7.2.2.1 Causes and Symptoms 7.2.3 Arrhythmia 7.2.3.1 Causes and Symptoms 7.2.4 Dilated Cardiomyopathy 7.2.4.1 Causes and Symptoms 7.2.5 Myocardial Infarction 7.2.5.1 Causes and Symptoms 7.2.6 Heart Failure 7.2.6.1 Causes and Symptoms 7.2.7 Hypertrophic Cardiomyopathy 7.2.7.1 Causes and Symptoms 7.2.8 Mitral Valve Regurgitation 7.2.8.1 Causes and Symptoms 7.2.9 Mitral Valve Prolapse 7.2.9.1 Causes and Symptoms 7.2.10 Pulmonary Stenosis 7.2.10.1 Causes and Symptoms 7.3 Machine Learning Algorithms Used for Predicting Heart Disease 7.3.1 Naïve Bayes 7.3.2 Support Vector Machine Algorithm 7.3.3 Random Forest 7.3.4 Decision Tree 7.3.4.1 Information Gain (ID3) 7.3.4.2 Gain Ratio (C4.5) 7.3.4.3 Gini Index (CART) 7.4 K-Nearest Neighbor 7.5 Logistic Regression 7.6 CASE Study: Exploring Heart Disease from the Given Dataset 7.6.1 Dataset 7.6.2 Percentage of People Having Various Chest Pain Type 7.6.3 Resting Blood Pressure Histogram 7.6.4 Diagnosis of Heart Disease in the Given Record 7.6.5 Chest Pain-Based Heart Disease Count 7.6.6 CORR ([Resting Blood Pressure], [Serum Cholesterol]) 7.7 Conclusions References Chapter 8 A Deep Learning Framework Using AlexNet for Early Detection of Pancreatic Cancer 8.1 The Pancreas and Its Function 8.2 Cancerous Cell and Its Effect on the Human Body 8.3 Pancreatic Cancer 8.4 Statistics (Mortality Rate) 8.5 Symptoms 8.6 Causes and Risk Factors Associated with Pancreatic Cancer 8.7 Detection and Treatment 8.7.1 Previous Work 8.7.2 Significance of Early Detection 8.7.3 Challenges of Early Detection 8.7.4 Existing Approaches in Detecting Cancer 8.7.5 Imaging Tests 8.7.6 Other Tests Available 8.8 Treatment 8.9 Prerequisite Knowledge Required 8.9.1 Pancreas Image Classification 8.10 Convolution Neural Network 8.11 Proposed Architecture 8.11.1 Max Pooling 8.12 Dataset 8.13 Preprocessing of Data 8.14 Data Augmentation 8.14.1 Need of Augmentation 8.15 Model Used 8.16 Results 8.17 Conclusion References Chapter 9 Applications of the Map-Reduce Programming Framework to Clinical Big Data Analysis: Current Landscape and Future Trends 9.1 Introduction 9.1.1 Big Data 9.1.1.1 History of Big Data 9.1.1.2 Importance of Big Data 9.1.1.3 Working of Big Data 9.1.1.4 Big Data Use-Cases 9.1.2 Hadoop 9.1.2.1 Hadoop History 9.1.2.2 Importance of Hadoop 9.1.3 Map-Reduce 9.1.3.1 Importance of Map-Reduce 9.1.3.2 Hadoop Map-Reduce Working 9.2 Big Data Frameworks for Healthcare 9.3 Role of Hadoop Map-Reduce Framework in Clinical Analysis 9.3.1 Mapping of Clinical Data with Hadoop Map-Reduce in Context with Big Data 9.4 Challenges of Hadoop Map-Reduce Framework in Clinical Analysis 9.4.1 Clinical Big Data and Forthcoming Claims 9.5 Future Trends of Hadoop Map-Reduce Framework in Clinical Analysis 9.6 Conclusions References Web References Chapter 10 An Investigation of Different Machine Learning Approaches for Healthcare Analytics 10.1 Machine Learning for Ailment Identification and Diagnosis Using ML Models 10.1.1 Data Loading 10.1.1.1 Data Preprocessing 10.2 Explore Your Data 10.3 Splitting Data 10.3.1 Efficient Split 10.4 Generate the Model 10.4.1 Supervised Learning 10.4.2 Unsupervised Learning 10.4.3 Semi-Supervised Learning 10.4.4 Reinforcement Learning 10.5 Evaluate Model 10.5.1 Drug Discovery 10.5.2 Drug Development Phases 10.5.3 Machine Learning Technique for Image Classification 10.5.3.1 Support Vector Machine (SVM) 10.5.4 The Neural Network to Deep Learning 10.6 Machine Learning in Treatment Studies 10.7 Machine Learning for Personalized Medicine 10.7.1 Radiation-Oncology 10.7.2 Rheumatic Disease 10.7.3 COVID-19 10.8 Smart Health Records 10.8.1 Smart Health Data Process 10.8.2 Deep Learning Algorithms in Healthcare 10.8.3 Artificial Neural Network 10.8.4 Deep Neural Network 10.8.5 Convolutional Neural Network 10.9 Implementation Challenges of Machine Learning in Healthcare 10.9.1 High Level of Data Customization 10.9.2 Accessibility of Expertise and Talents 10.9.3 Venture Budget 10.10 Conclusion References Chapter 11 The Potential of Machine Learning for Clinical Predictive Analytics 11.1 Introduction 11.1.1 Big Data 11.1.2 Challenges Faced by Big Data 11.2 Machine Learning Algorithms for Analytics 11.2.1 Types of ML Algorithms 11.2.1.1 Supervised Learning 11.2.1.2 Unsupervised Learning 11.3 Conclusion 11.4 Common Terminologies References Chapter 12 Predictive Analytics in Healthcare Using Machine Learning Tools and Techniques 12.1 Introduction 12.2 Predictive Analytics – An Overview 12.3 Define Machine Learning 12.3.1 Steps in Applying ML 12.3.2 Collecting Data 12.3.3 Data Preparation 12.3.4 Training a Model 12.3.5 Performance Evaluation 12.3.6 Improving the Performance 12.4 Machine Learning Algorithms 12.4.1 Supervised Learning 12.4.2 Unsupervised Learning 12.4.3 Semi-Supervised Learning 12.4.4 Reinforcement Learning 12.5 Machine Learning Tools 12.5.1 Platform vs. Libraries 12.5.2 Graphical User Interface vs. Command Line Interface vs. Application Program Interface 12.5.3 Local vs. Remote 12.5.4 ML Using R 12.6 Evaluation Metrics 12.6.1 Confusion Matrix 12.6.2 Accuracy 12.6.3 Precision 12.6.4 Recall 12.6.5 F1 Score 12.6.6 The Area under the Curve 12.6.7 Mean Square Error 12.6.8 Mean Absolute Error 12.7 Machine Learning in Various Fields 12.7.1 Transportation Industry 12.7.2 Economics 12.7.3 Healthcare Industry 12.7.4 Agriculture Industry 12.7.5 Sales and Marketing 12.8 Machine Learning Predictions in Healthcare 12.8.1 Predictions of Stroke 12.8.2 Predictions on Thyroid Disorder 12.8.3 Prediction of Diabetic Diseases 12.8.4 Prediction of Bladder Volume 12.8.5 Detection of Breast Cancer 12.9 Conclusion References Chapter 13 A Collective Study of Machine Learning (ML) Algorithms and Its Impact on Various Facets of Healthcare 13.1 Introduction to Machine Learning 13.2 Machine Learning vs. Data Mining 13.3 Essential Keywords 13.4 Step-by-Step Mechanism of ML 13.5 History of Machine Learning 13.6 Probability Theory 13.7 Machine Learning Approaches 13.7.1 Supervised Machine Learning 13.7.2 Unsupervised Machine Learning 13.7.3 Reinforced Machine Learning 13.8 Machine Learning Applications 13.9 Types of Machine Learning Algorithms 13.9.1 Supervised Algorithm 13.9.1.1 Simple Linear Regression Algorithm 13.9.1.2 Random Forest Algorithm 13.9.1.3 Logistic Regression Algorithm 13.9.1.4 KNN (K-Nearest Neighbors) 13.9.1.5 Decision Tree Algorithm 13.9.1.6 Support Vector Machine (SVM) 13.9.1.7 Naïve Bayes 13.9.2 Unsupervised Learning Algorithm 13.9.2.1 K-Means Algorithm 13.9.2.2 Apriori Algorithm 13.9.2.3 Clustering Algorithm 13.9.3 Semi-Supervised Learning Algorithm 13.9.4 Reinforcement Learning Algorithm 13.9.4.1 Characteristics of Reinforcement Learning algorithm 13.9.4.2 Reinforcement Learning Algorithm Applications 13.10 Smart Healthcare 13.11 Role of IoT in Smart Healthcare System 13.12 Smart Healthcare System and Internet of Things (IoT) 13.13 Evaluation of Algorithms Performance 13.14 Discussion 13.15 Conclusion and Future Scope References Index