دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Przemysław Biecek. Tomasz Burzykowski
سری: Chapman & Hall/CRC Data Science Series
ISBN (شابک) : 9780367135591, 9780429027192
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 327
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل مدل توضیحی: کاوش ، توضیح و بررسی مدلهای پیش بینی کننده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تحلیل مدل توضیحی کاوش، توضیح و بررسی مدلهای پیشبینی مجموعهای از روشها و ابزارهایی است که برای ساخت مدلهای پیشبینی بهتر و نظارت بر رفتار آنها در یک محیط متغیر طراحی شدهاند. امروزه، گلوگاه واقعی در مدلسازی پیشبینیکننده نه کمبود داده است، نه فقدان قدرت محاسباتی، نه الگوریتمهای ناکافی و نه فقدان مدلهای انعطافپذیر. فقدان ابزاری برای کاوش مدل (استخراج روابط آموخته شده توسط مدل)، توضیح مدل (درک عوامل کلیدی موثر بر تصمیم گیری مدل) و بررسی مدل (شناسایی نقاط ضعف مدل و ارزیابی عملکرد مدل) است. این کتاب مجموعهای از روشهای آگنوستیک مدل را ارائه میکند که ممکن است برای هر مدل جعبه سیاه همراه با کاربردهای دنیای واقعی برای طبقهبندی و مشکلات رگرسیون استفاده شود.
Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Part I Introduction 1 Introduction 1.1 The aim of the book 1.2 A bit of philosophy: three laws of model explanation 1.3 Terminology 1.4 Black-box models and glass-box models 1.5 Model-agnostic and model-specific approach 1.6 The structure of the book 1.7 What is included in this book and what is not 1.8 Acknowledgements 2 Model Development 2.1 Introduction 2.2 Model-development process 2.3 Notation 2.4 Data understanding 2.5 Model assembly (fitting) 2.6 Model audit 3 Do-it-yourself 3.1 Do-it-yourself with R 3.1.1 What to install? 3.1.2 How to work with DALEX? 3.1.3 How to work with archivist? 3.2 Do-it-yourself with Python 3.2.1 What to install? 3.2.2 How to work with dalex? 3.2.3 Code snippets for Python 4 Datasets and Models 4.1 Sinking of the RMS Titanic 4.1.1 Data exploration 4.2 Models for RMS Titanic, snippets for R 4.2.1 Logistic regression model 4.2.2 Random forest model 4.2.3 Gradient boosting model 4.2.4 Support vector machine model 4.2.5 Models’ predictions 4.2.6 Models’ explainers 4.2.7 List of model-objects 4.3 Models for RMS Titanic, snippets for Python 4.3.1 Logistic regression model 4.3.2 Random forest model 4.3.3 Gradient boosting model 4.3.4 Support vector machine model 4.3.5 Models’ predictions 4.3.6 Models’ explainers 4.4 Apartment prices 4.4.1 Data exploration 4.5 Models for apartment prices, snippets for R 4.5.1 Linear regression model 4.5.2 Random forest model 4.5.3 Support vector machine model 4.5.4 Models’ predictions 4.5.5 Models’ explainers 4.5.6 List of model-objects 4.6 Models for apartment prices, snippets for Python 4.6.1 Linear regression model 4.6.2 Random forest model 4.6.3 Support vector machine model 4.6.4 Models’ predictions 4.6.5 Models’ explainers Part II Instance Level 5 Introduction to Instance-level Exploration 6 Break-down Plots for Additive Attributions 6.1 Introduction 6.2 Intuition 6.3 Method 6.3.1 Break-down for linear models 6.3.2 Break-down for a general case 6.4 Example: Titanic data 6.5 Pros and cons 6.6 Code snippets for R 6.6.1 Basic use of the predict_parts() function 6.6.2 Advanced use of the predict_parts() function 6.7 Code snippets for Python 7 Break-down Plots for Interactions 7.1 Intuition 7.2 Method 7.3 Example: Titanic data 7.4 Pros and cons 7.5 Code snippets for R 7.6 Code snippets for Python 8 Shapley Additive Explanations (SHAP) for Average Attributions 8.1 Intuition 8.2 Method 8.3 Example: Titanic data 8.4 Pros and cons 8.5 Code snippets for R 8.6 Code snippets for Python 9 Local Interpretable Model-agnostic Explanations (LIME) 9.1 Introduction 9.2 Intuition 9.3 Method 9.3.1 Interpretable data representation 9.3.2 Sampling around the instance of interest 9.3.3 Fitting the glass-box model 9.4 Example: Titanic data 9.5 Pros and cons 9.6 Code snippets for R 9.6.1 The lime package 9.6.2 The localModel package 9.6.3 The iml package 9.7 Code snippets for Python 10 Ceteris-paribus Profiles 10.1 Introduction 10.2 Intuition 10.3 Method 10.4 Example: Titanic data 10.5 Pros and cons 10.6 Code snippets for R 10.6.1 Basic use of the predict_profile() function 10.6.2 Advanced use of the predict_profile() function 10.6.3 Comparison of models (champion-challenger) 10.7 Code snippets for Python 11 Ceteris-paribus Oscillations 11.1 Introduction 11.2 Intuition 11.3 Method 11.4 Example: Titanic data 11.5 Pros and cons 11.6 Code snippets for R 11.6.1 Basic use of the predict_parts() function 11.6.2 Advanced use of the predict_parts() function 11.7 Code snippets for Python 12 Local-diagnostics Plots 12.1 Introduction 12.2 Intuition 12.3 Method 12.3.1 Nearest neighbors 12.3.2 Local-fidelity plot 12.3.3 Local-stability plot 12.4 Example: Titanic 12.5 Pros and cons 12.6 Code snippets for R 12.7 Code snippets for Python 13 Summary of Instance-level Exploration 13.1 Introduction 13.2 Number of explanatory variables in the model 13.2.1 Low to medium number of explanatory variables 13.2.2 Medium to a large number of explanatory variables 13.2.3 Very large number of explanatory variables 13.3 Correlated explanatory variables 13.4 Models with interactions 13.5 Sparse explanations 13.6 Additional uses of model exploration and explanation 13.7 Comparison of models (champion-challenger analysis) Part III Dataset Level 14 Introduction to Dataset-level Exploration 15 Model-performance Measures 15.1 Introduction 15.2 Intuition 15.3 Method 15.3.1 Continuous dependent variable 15.3.1.1 Goodness-of-fit 15.3.1.2 Goodness-of-prediction 15.3.2 Binary dependent variable 15.3.2.1 Goodness-of-fit 15.3.2.2 Goodness-of-prediction 15.3.3 Categorical dependent variable 15.3.3.1 Goodness-of-fit 15.3.3.2 Goodness-of-prediction 15.3.4 Count dependent variable 15.4 Example 15.4.1 Apartment prices 15.4.2 Titanic data 15.5 Pros and cons 15.6 Code snippets for R 15.7 Code snippets for Python 16 Variable-importance Measures 16.1 Introduction 16.2 Intuition 16.3 Method 16.4 Example: Titanic data 16.5 Pros and cons 16.6 Code snippets for R 16.7 Code snippets for Python 17 Partial-dependence Profiles 17.1 Introduction 17.2 Intuition 17.3 Method 17.3.1 Partial-dependence profiles 17.3.2 Clustered partial-dependence profiles 17.3.3 Grouped partial-dependence profiles 17.3.4 Contrastive partial-dependence profiles 17.4 Example: apartment-prices data 17.4.1 Partial-dependence profiles 17.4.2 Clustered partial-dependence profiles 17.4.3 Grouped partial-dependence profiles 17.4.4 Contrastive partial-dependence profiles 17.5 Pros and cons 17.6 Code snippets for R 17.6.1 Partial-dependence profiles 17.6.2 Clustered partial-dependence profiles 17.6.3 Grouped partial-dependence profiles 17.6.4 Contrastive partial-dependence profiles 17.7 Code snippets for Python 17.7.1 Grouped partial-dependence profiles 17.7.2 Contrastive partial-dependence profiles 18 Local-dependence and Accumulated-local Profiles 18.1 Introduction 18.2 Intuition 18.3 Method 18.3.1 Local-dependence profile 18.3.2 Accumulated-local profile 18.3.3 Dependence profiles for a model with interaction and correlated explanatory variables: an example 18.4 Example: apartment-prices data 18.5 Pros and cons 18.6 Code snippets for R 18.7 Code snippets for Python 19 Residual-diagnostics Plots 19.1 Introduction 19.2 Intuition 19.3 Method 19.4 Example: apartment-prices data 19.5 Pros and cons 19.6 Code snippets for R 19.7 Code snippets for Python 20 Summary of Dataset-level Exploration 20.1 Introduction 20.2 Exploration on training/testing data 20.3 Correlated explanatory variables 20.4 Comparison of models (champion-challenger analysis) Part IV Use-cases 21 FIFA 19 21.1 Introduction 21.2 Data preparation 21.2.1 Code snippets for R 21.2.2 Code snippets for Python 21.3 Data understanding 21.4 Model assembly 21.4.1 Code snippets for R 21.4.2 Code snippets for Python 21.5 Model audit 21.5.1 Code snippets for R 21.5.2 Code snippets for Python 21.6 Model understanding (dataset-level explanations) 21.6.1 Code snippets for R 21.6.2 Code snippets for Python 21.7 Instance-level explanations 21.7.1 Robert Lewandowski 21.7.2 Code snippets for R 21.7.3 Code snippets for Python 21.7.4 CR7 21.7.5 Wojciech Szczęsny 21.7.6 Lionel Messi 22 Reproducibility 22.1 Package versions for R 22.2 Package versions for Python Bibliography Index