ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Expert Python Programming

دانلود کتاب برنامه نویسی متخصص پایتون

Expert Python Programming

مشخصات کتاب

Expert Python Programming

ویرایش: 4 
نویسندگان:   
سری:  
ISBN (شابک) : 9781801071109, 1801071101 
ناشر: Packt Publishing 
سال نشر: 2021 
تعداد صفحات: 631 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Expert Python Programming به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب برنامه نویسی متخصص پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Copyright
Contributors
Table of Contents
Preface
Chapter 1: Current Status of Python
	Where are we now and where are we going?
	What to do with Python 2
	Keeping up to date
		PEP documents
		Active communities
		Other resources
	Summary
Chapter 2: Modern Python Development Environments
	Technical requirements
	Python's packaging ecosystem
		Installing Python packages using pip
	Isolating the runtime environment
		Application-level isolation versus system-level isolation
	Application-level environment isolation
		Poetry as a dependency management system
	System-level environment isolation
		Containerization versus virtualization
		Virtual environments using Docker
			Writing your first Dockerfile
			Running containers
			Setting up complex environments
			Useful Docker and Docker Compose recipes for Python
		Virtual development environments using Vagrant
	Popular productivity tools
		Custom Python shells
		Using IPython
		Incorporating shells in your own scripts and programs
		Interactive debuggers
		Other productivity tools
	Summary
Chapter 3: New Things in Python
	Technical requirements
	Recent language additions
		Dictionary merge and update operators
			Alternative – Dictionary unpacking
			Alternative – ChainMap from the collections module
		Assignment expressions
		Type-hinting generics
		Positional-only parameters
		zoneinfo module
		graphlib module
	Not that new, but still shiny
		breakpoint() function
		Development mode
		Module-level __getattr__() and __dir__() functions
		Formatting strings with f-strings
		Underscores in numeric literals
		secrets module
	What may come in the future?
		Union types with the | operator
		Structural pattern matching
	Summary
Chapter 4: Python in Comparison with Other Languages
	Technical requirements
	Class model and object-oriented programming
		Accessing super-classes
		Multiple inheritance and Method Resolution Order
		Class instance initialization
		Attribute access patterns
		Descriptors
			Real-life example – lazily evaluated attributes
		Properties
	Dynamic polymorphism
		Operator overloading
			Dunder methods (language protocols)
			Comparison to C++
		Function and method overloading
			Single-dispatch functions
	Data classes
	Functional programming
		Lambda functions
		The map(), filter(), and reduce() functions
		Partial objects and partial functions
		Generators
		Generator expressions
		Decorators
	Enumerations
	Summary
Chapter 5: Interfaces, Patterns, and Modularity
	Technical requirements
	Interfaces
		A bit of history: zope.interface
		Using function annotations and abstract base classes
			Using collections.abc
		Interfaces through type annotations
	Inversion of control and dependency injection
		Inversion of control in applications
		Using dependency injection frameworks
	Summary
Chapter 6: Concurrency
	Technical requirements
	What is concurrency?
	Multithreading
		What is multithreading?
		How Python deals with threads
		When should we use multithreading?
			Application responsiveness
			Multiuser applications
			Work delegation and background processing
		An example of a multithreaded application
			Using one thread per item
			Using a thread pool
			Using two-way queues
			Dealing with errors in threads
			Throttling
	Multiprocessing
		The built-in multiprocessing module
		Using process pools
		Using multiprocessing.dummy as the multithreading interface
	Asynchronous programming
		Cooperative multitasking and asynchronous I/O
		Python async and await keywords
		A practical example of asynchronous programming
		Integrating non-asynchronous code with async using futures
			Executors and futures
			Using executors in an event loop
	Summary
Chapter 7: Event-Driven Programming
	Technical requirements
	What exactly is event-driven programming?
		Event-driven != asynchronous
		Event-driven programming in GUIs
		Event-driven communication
	Various styles of event-driven programming
		Callback-based style
		Subject-based style
		Topic-based style
	Event-driven architectures
		Event and message queues
	Summary
Chapter 8: Elements of Metaprogramming
	Technical requirements
	What is metaprogramming?
	Using decorators to modify function behavior before use
		One step deeper: class decorators
	Intercepting the class instance creation process
	Metaclasses
		The general syntax
		Metaclass usage
		Metaclass pitfalls
		Using the __init__subclass__() method as an alternative to metaclasses
	Code generation
		exec, eval, and compile
		The abstract syntax tree
		Import hooks
		Notable examples of code generation in Python
			Falcon's compiled router
			Hy
	Summary
Chapter 9: Bridging Python with C and C++
	Technical requirements
	C and C++ as the core of Python extensibility
	Compiling and loading Python C extensions
	The need to use extensions
		Improving performance in critical code sections
		Integrating existing code written in different languages
		Integrating third-party dynamic libraries
		Creating efficient custom datatypes
	Writing extensions
		Pure C extensions
			A closer look at the Python/C API
			Calling and binding conventions
			Exception handling
			Releasing GIL
			Reference counting
		Writing extensions with Cython
			Cython as a source-to-source compiler
			Cython as a language
	Downsides of using extensions
		Additional complexity
		Harder debugging
	Interfacing with dynamic libraries without extensions
		The ctypes module
			Loading libraries
			Calling C functions using ctypes
			Passing Python functions as C callbacks
		CFFI
	Summary
Chapter 10: Testing and Quality Automation
	Technical requirements
	The principles of test-driven development
	Writing tests with pytest
		Test parameterization
		pytest's fixtures
		Using fakes
		Mocks and the unittest.mock module
	Quality automation
		Test coverage
		Style fixers and code linters
		Static type analysis
	Mutation testing
	Useful testing utilities
		Faking realistic data values
		Faking time values
	Summary
Chapter 11: Packaging and Distributing Python Code
	Technical requirements
	Packaging and distributing libraries
		The anatomy of a Python package
			setup.py
			setup.cfg
			MANIFEST.in
			Essential package metadata
			Trove classifiers
		Types of package distributions
			sdist distributions
			bdist and wheel distributions
		Registering and publishing packages
		Package versioning and dependency management
			The SemVer standard for semantic versioning
			CalVer for calendar versioning
		Installing your own packages
			Installing packages directly from sources
			Installing packages in editable mode
		Namespace packages
		Package scripts and entry points
	Packaging applications and services for the web
		The Twelve-Factor App manifesto
		Leveraging Docker
		Handling environment variables
		The role of environment variables in application frameworks
	Creating standalone executables
		When standalone executables are useful
		Popular tools
			PyInstaller
			cx_Freeze
			py2exe and py2app
		Security of Python code in executable packages
	Summary
Chapter 12: Observing Application Behavior and Performance
	Technical requirements
	Capturing errors and logs
		Python logging essentials
			Logging system components
			Logging configuration
		Good logging practices
		Distributed logging
		Capturing errors for later review
	Instrumenting code with custom metrics
		Using Prometheus
	Distributed application tracing
		Distributed tracing with Jaeger
	Summary
Chapter 13: Code Optimization
	Technical requirements
	Common culprits for bad performance
		Code complexity
			Cyclomatic complexity
			The big O notation
		Excessive resource allocation and leaks
		Excessive I/O and blocking operations
	Code profiling
		Profiling CPU usage
			Macro-profiling
			Micro-profiling
		Profiling memory usage
			Using the objgraph module
			C code memory leaks
	Reducing complexity by choosing appropriate data structures
		Searching in a list
		Using sets
		Using the collections module
			deque
			defaultdict
			namedtuple
	Leveraging architectural trade-offs
		Using heuristics and approximation algorithms
		Using task queues and delayed processing
		Using probabilistic data structures
		Caching
			Deterministic caching
			Non-deterministic caching
	Summary
	Why subscribe?
Packt Page
Other Books You May Enjoy
Index




نظرات کاربران