دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Fourth edition نویسندگان: Coleman. Hugh W., Steele. W. Glenn سری: ISBN (شابک) : 9781119417668, 111941766X ناشر: John Wiley & Sons سال نشر: 2018 تعداد صفحات: 376 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب آزمایش، اعتبار سنجی و تجزیه و تحلیل عدم قطعیت برای مهندسان: مهندسی -- آزمایشات.، عدم قطعیت.، فناوری و مهندسی -- مهندسی (عمومی)، فناوری و مهندسی -- مرجع.
در صورت تبدیل فایل کتاب Experimentation, validation, and uncertainty analysis for engineers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آزمایش، اعتبار سنجی و تجزیه و تحلیل عدم قطعیت برای مهندسان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به مهندسان و دانشمندان کمک می کند تا عدم قطعیت را در تمام مراحل آزمایش و اعتبارسنجی شبیه سازی ها ارزیابی و مدیریت کنند. به طور کامل از نسخه قبلی، آزمایش، اعتبارسنجی و تجزیه و تحلیل عدم قطعیت برای مهندسان به روز شده است، ویرایش چهارم شامل پوشش گسترده و نمونه های جدیدی از به کارگیری روش مونت کارلو (MCM) است. ) در انجام تحلیل های عدم قطعیت. با ارائه متدولوژی رایج بین المللی پذیرفته شده از استانداردهای ISO، ANSI و ASME برای انتشار عدم قطعیت ها با استفاده از روش MCM و سری تیلور (TSM)، رویکردی منطقی برای آزمایش و اعتبارسنجی از طریق استفاده از تحلیل عدم قطعیت در برنامه ریزی ارائه می کند. مراحل طراحی، ساخت، اشکال زدایی، اجرا، تجزیه و تحلیل داده ها و گزارش دهی برنامه های آزمایشی و اعتبارسنجی. همچنین نحوه استفاده از رویکرد صفحهگسترده برای اعمال MCM و TSM را بر اساس تجربه نویسندگان در استفاده از تحلیل عدم قطعیت در آزمایشهای پیچیده و مقیاس بزرگ سیستمهای مهندسی واقعی نشان میدهد. آزمایش، اعتبار سنجی و تجزیه و تحلیل عدم قطعیت برای مهندسان، نسخه چهارم شامل مثالهایی در سرتاسر، شامل مسائل انتهای فصل است و با وبسایت نویسندگان www.uncertainty-analysis.com همراه است. خوانندگان را از طریق تمام جنبههای آزمایش، اعتبارسنجی و تجزیه و تحلیل عدم قطعیت راهنمایی میکند. تأکید بر استفاده از روش مونت کارلو در انجام تحلیل عدم قطعیت شامل مثالهای کامل جدید در سراسر ویژگیهای مسائل قابل اجرا در پایان فصلهای آزمایش، اعتبارسنجی، و تجزیه و تحلیل عدم قطعیت برای مهندسین، ویرایش چهارم. یک متن و راهنمای ایده آل برای محققان، مهندسان و دانشجویان کارشناسی ارشد و ارشد در رشته های مهندسی و علوم است. دانستن مطالب در این ویرایش چهارم برای کسانی که درگیر اجرای یا مدیریت برنامه های آزمایشی یا اعتبارسنجی مدل ها و شبیه سازی ها هستند، ضروری است.
Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.
CONTENTS PREFACE 1. EXPERIMENTATION, ERRORS, AND UNCERTAINTY 1-1 EXPERIMENTATION 1-1.1 Why Is Experimentation Necessary? 1-1.2 Degree of Goodness and Uncertainty Analysis 1-1.3 Experimentation and Validation of Simulations 1-2 EXPERIMENTAL APPROACH 1-2.1 Questions to Be Considere 1-2.2 Phases of Experimental Program 1-3 BASIC CONCEPTS AND DEFINITIONS 1-3.1 Errors and Uncertainties 1-3.2 Categorizing and Naming Errors and Uncertainties 1-3.3 Estimating Standard Uncertaintie 1-3.4 Determining Combined Standard Uncertainties 1-3.5 Elemental Systematic Errors and Effects of Calibration 1-3.6 Expansion of Concept from “Measurement Uncertainty”to “Experimental Uncertainty” 1-3.7 Repetition and Replication 1-3.8 Associating a Percentage Coverage or Confidence with Uncertainty Estimates 1-4 EXPERIMENTAL RESULTS DETERMINED FROM A DATA REDUCTION EQUATION COMBINING MULTIPLE MEASURED VARIABLES 1-5 GUIDES AND STANDARDS 1-5.1 Experimental Uncertainty Analysis 1-5.2 Validation of Simulations 1-6 A NOTE ON NOMENCLATURE PROBLEMS REFERENCES 2. COVERAGE AND CONFIDENCE INTERVALS FOR AN INDIVIDUAL MEASURED VARIABLE 2-1 COVERAGE INTERVALS FROM THE MONTE CARLO METHOD FOR A SINGLE MEASURED VARIABLE 2-2 CONFIDENCE INTERVALS FROM THE TAYLOR SERIES METHOD FOR A SINGLE MEASURED VARIABLE, ONLY RANDOM ERRORS CONSIDERED 2-2.1 Statistical Distributions 2-2.2 The Gaussian Distribution 2-2.3 Confidence Intervals in Gaussian Parent Population 2-2.4 Confidence Intervals in Samples from Gaussian Parent Populations 2-2.5 Tolerance and Prediction Intervals in Samples from Gaussian Parent Populations 2-2.6 Statistical Rejection of Outliers from a Sample Assumed from a Gaussian Parent Population 2-3 CONFIDENCE INTERVALS FROM THE TAYLOR SERIES METHOD FOR A SINGLE MEASURED VARIABLE: RANDOM AND SYSTEMATIC ERRORS CONSIDERED 2-3.1 The Central Limit Theorem 2-3.2 Systematic Standard Uncertainty Estimation 2-3.3 The TSM Expanded Uncertainty of a Measured Variable 2-3.4 The TSM Large-Sample Expanded Uncertainty of a Measured Variable 2-4 UNCERTAINTY OF UNCERTAINTY ESTIMATES AND CONFIDENCE INTERVAL LIMITS FOR A MEASURED VARIABLE 2-4.1 Uncertainty of Uncertainty Estimates 2-4.2 Implications of the Uncertainty in Limits of High Confidence Uncertainty Intervals Used in Analysis and Design2 REFERENCES PROBLEMS 3. UNCERTAINTY IN A RESULT DETERMINED FROM MULTIPLE VARIABLES 3-1 GENERAL UNCERTAINTY ANALYSIS VS. DETAILED UNCERTAINTY ANALYSIS 3-2 MONTE CARLO METHOD FOR PROPAGATION OF UNCERTAINTIES 3-2.1 Using the MCM in General Uncertainty Analysis 3-2.2 Using the MCM in Detailed Uncertainty Analysis 3-2.2.1 Detailed MCM Uncertainty Analysis: Propagation Using Individual Variable Random Standard Uncertainties 3-2.2.2 Detailed MCM Uncertainty Analysis: Propagation Using Directly Determined Random Standard Uncertainty of the Result 3-3 TAYLOR SERIES METHOD FOR PROPAGATION OF UNCERTAINTIES 3-3.1 General Uncertainty Analysis Using the Taylor Series Method (TSM) 3-3.2 Detailed Uncertainty Analysis Using the Taylor Series Method (TSM) 3-3.2.1 Detailed (TSM) Uncertainty Analysis: Using Propagation to Determine sr 3-3.2.2 Detailed (TSM) Uncertainty Analysis: Direct Determination of sr 3-4 DETERMINING MCM COVERAGE INTERVALS AND TSM EXPANDED UNCERTAINTY 3-4.1 MCM Coverage Intervals for a Result 3-4.2 TSM Expanded Uncertainty of a Result 3-5 GENERAL UNCERTAINTY ANALYSIS USING THE TSM AND MSM APPROACHES FOR A ROUGH-WALLED PIPE FLOW EXPERIMENT 3-5.1 TSM General Uncertainty Analysis 3-5.2 MCM General Uncertainty Analysis 3-5.3 Implementation Using a Spreadsheet 3-5.4 Results of the Analysis 3-6 COMMENTS ON IMPLEMENTING DETAILED UNCERTAINTY ANALYSIS USING A SPREADSHEET REFERENCES PROBLEMS 4. GENERAL UNCERTAINTY ANALYSIS USING THE TAYLOR SERIES METHOD (TSM) 4-1 TSM APPLICATION TO EXPERIMENT PLANNING 4-2 TSM APPLICATION TO EXPERIMENT PLANNING: SPECIAL FUNCTIONAL FORM 4-3 USING TSM UNCERTAINTY ANALYSIS IN PLANNING AN EXPERIMENT 4-4 EXAMPLE: ANALYSIS OF PROPOSED PARTICULATE MEASURING SYSTEM 4-4.1 The Problem 4-4.2 Proposed Measurement Technique and System 4-4.3 Analysis of Proposed Experiment 4-4.4 Implications of Uncertainty Analysis Results 4-4.5 Design Changes Indicated by Uncertainty Analysis 4-5 EXAMPLE: ANALYSIS OF PROPOSED HEAT TRANSFER EXPERIMENT 4-5.1 The Problem 4-5.2 Two Proposed Experimental Techniques 4-5.3 General Uncertainty Analysis: Steady-State Technique 4-5.4 General Uncertainty Analysis: Transient Technique 4-5.5 Implications of Uncertainty Analysis Results 4-6 EXAMPLES OF PRESENTATION OF RESULTS FROM ACTUAL APPLICATIONS 4-6.1 Results from Analysis of a Turbine Test 4-6.2 Results from Analysis of a Solar Thermal Absorber/Thruster Test REFERENCES PROBLEMS 5. DETAILED UNCERTAINTY ANALYSIS: OVERVIEW AND DETERMINING RANDOM UNCERTAINTIES IN RESULTS 5-1 USING DETAILED UNCERTAINTY ANALYSIS 5-2 DETAILED UNCERTAINTY ANALYSIS: OVERVIEW OF COMPLETE METHODOLOGY 5-3 DETERMINING RANDOM UNCERTAINTY OF EXPERIMENTAL RESULT 5-3.1 Example: Random Uncertainty Determination in Compressible Flow Venturi Meter Calibration Facility 5-3.2 Example: Random Uncertainty Determination in Laboratory-Scale Ambient Temperature Flow Test Facility 5-3.3 Example: Random Uncertainty Determination in Full-Scale Rocket Engine Ground Test Facility 5-3.4 Summary REFERENCES 6. DETAILED UNCERTAINTY ANALYSIS: DETERMINING SYSTEMATIC UNCERTAINTIES IN RESULTS 6-1 ESTIMATING SYSTEMATIC UNCERTAINTIES 6-1.1 Example: Estimating Uncertainty in Property Values 6-1.2 Example: Estimating Systematic Uncertainties in the Turbulent Heat Transfer Test Facility (THTTF) 6-1.2.1 Zero-centering Asymmetric Systematic Error Effects 6-1.2.2 Systematic Uncertainty in Test Plate Surface Temperature Tw 6-1.2.3 Systematic Uncertainty in Power into Test Plate 6-1.3 Example: An “Optimum” Calibration Approach Used in a Test to Determine Turbine Efficiency 6-2 DETERMINING SYSTEMATIC UNCERTAINTY OF EXPERIMENTAL RESULT INCLUDING CORRELATED SYSTEMATIC ERROR EFFECTS 6-2.1 Example: Correlated Systematic Error Effects with “% of Full Scale”(%FS) Systematic Uncertainties 6-2.2 Example: Correlated Systematic Error Effects with “% of Reading”Systematic Uncertainties 6-2.3 Example: Correlated Systematic Error Effects with Systematic Uncertainties that Vary with Set Point 6-2.4 Example: Correlated Systematic Error Effects When Only Some Elemental Sources Are Correlated 6-2.5 Example: Correlated Systematic Error Effects When Determining Average Velocity of a Fluid Flow 6-3 COMPARATIVE TESTING 6-3.1 Result Is a Difference of Test Results 6-3.2 Result Is a Ratio of Test Results 6-4 SOME ADDITIONAL CONSIDERATIONS IN EXPERIMENT EXECUTION 6-4.1 Choice of Test Points: Rectification 6-4.2 Choice of Test Sequence 6-4.3 Relationship to Statistical Design of Experiments 6-4.4 Use of a Jitter Program 6-4.5 Comments on Transient Testing 6-4.6 Comments on Digital Data Acquisition Errors REFERENCES PROBLEMS 7. DETAILED UNCERTAINTY ANALYSIS: COMPREHENSIVE EXAMPLES 7-1 TSM COMPREHENSIVE EXAMPLE: SAMPLE-TO-SAMPLE EXPERIMENT 7-1.1 The Problem 7-1.2 Measurement System 7-1.3 Zeroth-Order Replication-Level Analysis 7-1.4 First-Order Replication-Level Analysis 7-1.5 Nth-Order Replication-Level Analysis 7-2 TSM COMPREHENSIVE EXAMPLE: USE OF BALANCE CHECKS 7-3 COMPREHENSIVE EXAMPLE: DEBUGGING AND QUALIFICATION OF A TIMEWISE EXPERIMENT 7-3.1 Orders of Replication Level in Timewise Experiments 7-3.2 Example 7-4 COMPREHENSIVE EXAMPLE: HEAT EXCHANGER TEST FACILITY FOR SINGLE AND COMPARATIVE TESTS 7-4.1 Determination of the Uncertainty in q for a Single Core Design 7-4.1.1 Case 1: No Shared Error Sources in Any Measurements 7-4.1.2 Case 2: Possible Shared Error Sources in Temperature Measurements 7-4.2 Determination of the Uncertainty in ????q for Two Core Designs Tested Sequentially Using the Same Facility and Instrumentation 7-5 CASE STUDY: EXAMPLES OF SINGLE AND COMPARATIVE TESTS OF NUCLEAR POWER PLANT RESIDUAL HEAT REMOVAL HEAT EXCHANGER 7-5.1 Single Test Results for an RHR Heat Exchanger (HX1) 7-5.2 Comparative Test Approach for the Decrease in Fouling Resistance and Its Uncertainty REFERENCES PROBLEMS 8. THE UNCERTAINTY ASSOCIATED WITH THE USE OF REGRESSIONS 8-1 OVERVIEW OF LINEAR REGRESSION ANALYSIS AND ITS UNCERTAINTY1 8-1.1 Uncertainty in Coefficients 8-1.2 Uncertainty in Y from Regression Model 8-1.3 (Xi, Yi) Variables Are Functions 8-2 DETERMINING AND REPORTING REGRESSION UNCERTAINTY 8-2.1 MCM Regression Uncertainty Determination 8-2.2 TSM Regression Uncertainty Determination 8-2.3 Reporting Regression Uncertainties 8-3 METHOD OF LEAST SQUARES REGRESSION 8-4 FIRST-ORDER REGRESSION EXAMPLE: MCM APPROACH TO DETERMINE REGRESSION UNCERTAINTY 8-5 REGRESSION EXAMPLES: TSM APPROACH TO DETERMINE REGRESSION UNCERTAINTY 8-5.1 Uncertainty in First-Order Coefficients 8-5.2 Uncertainty in Y from First-Order Regression 8-5.3 Uncertainty in Y from Higher-Order Regressions 8-5.4 Uncertainty in Y from Regressions in Which X and Y Are Functional Relations 8-5.5 Uncertainty Associated with Multivariate Linear Regression 8-6 COMPREHENSIVE TSM EXAMPLE: REGRESSIONS AND THEIR UNCERTAINTIES IN A FLOW TEST 8-6.1 Experimental Apparatus 8-6.2 Pressure Transducer Calibration and Uncertainty 8-6.3 Venturi Discharge Coefficient and Its Uncertainty 8-6.4 Flow Rate and Its Uncertainty in a Test REFERENCES PROBLEMS 9. VALIDATION OF SIMULATIONS 9-1 INTRODUCTION TO VALIDATION METHODOLOGY 9-2 ERRORS AND UNCERTAINTIES 9-3 VALIDATION NOMENCLATURE 9-4 VALIDATION APPROACH 9-5 CODE AND SOLUTION VERIFICATION 9-6 INTERPRETATION OF VALIDATION RESULTS USING E AND uval 9-6.1 Interpretation with No Assumptions Made about Error Distributions 9-6.2 Interpretation with Assumptions Made about Error Distributions 9-7 ESTIMATION OF VALIDATION UNCERTAINTY uval 9-7.1 Case 1: Estimating uval When Experimental Value D of Validation Variable Is Directly Measured 9-7.2 Cases 2 and 3: Estimating uval When Experimental Value D of Validation Variable Is Determined from Data Reduction Equation 9-7.2.1 Case 2: No Measured Variables Share Identical Error Sources 9-7.2.2 Case 3: Measured Variables Share Identical Error Sources 9-7.3 Case 4: Estimating uval When Experimental Value D of Validation Variable Is Determined from Data Reduction Equation That Itself Is a Model 9-8 SOME PRACTICAL POINTS REFERENCES ANSWERS TO SELECTED PROBLEMS APPENDIX A. USEFUL STATISTICS APPENDIX B. TAYLOR SERIES METHOD (TSM) FOR UNCERTAINTY PROPAGATION B-1 DERIVATION OF UNCERTAINTY PROPAGATION EQUATION B-2 COMPARISON WITH PREVIOUS APPROACHES B-2.1 Abernethy et al. Approach B-2.2 Coleman and Steele Approach B-2.3 ISO Guide 1993 GUM Approach B-2.4 AIAA Standard, AGARD, and ANSI/ASME Approach B-2.5 NIST Approach B-3 ADDITIONAL ASSUMPTIONS FOR ENGINEERING APPLICATIONS B-3.1 Approximating the Coverage Factor REFERENCES APPENDIX C. COMPARISON OF MODELS FOR CALCULATION OF UNCERTAINTY C-1 MONTE CARLO SIMULATIONS C-2 SIMULATION RESULTS REFERENCES APPENDIX D. SHORTEST COVERAGE INTERVAL FOR MONTE CARLO METHOD REFERENCE APPENDIX E. ASYMMETRIC SYSTEMATIC UNCERTAINTIES E-1 PROCEDURE FOR ASYMMETRIC SYSTEMATIC UNCERTAINTIES USING TSM PROPAGATION E-2 PROCEDURE FOR ASYMMETRIC SYSTEMATIC UNCERTAINTIES USING MCM PROPAGATION E-3 EXAMPLE: BIASES IN A GAS TEMPERATURE MEASUREMENT SYSTEM REFERENCES APPENDIX F. DYNAMIC RESPONSE OF INSTRUMENT SYSTEMS F-1 GENERAL INSTRUMENT RESPONSE F-2 RESPONSE OF ZERO-ORDER INSTRUMENTS F-3 RESPONSE OF FIRST-ORDER INSTRUMENTS F-4 RESPONSE OF SECOND-ORDER INSTRUMENTS F-5 SUMMARY REFERENCES INDEX