ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Experimental Physics: Principles and Practice for the Laboratory

دانلود کتاب فیزیک تجربی: اصول و تمرین برای آزمایشگاه

Experimental Physics: Principles and Practice for the Laboratory

مشخصات کتاب

Experimental Physics: Principles and Practice for the Laboratory

دسته بندی: فیزیک
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 149877847X, 9781498778473 
ناشر: CRC Press 
سال نشر: 2020 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Experimental Physics: Principles and Practice for the Laboratory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیزیک تجربی: اصول و تمرین برای آزمایشگاه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فیزیک تجربی: اصول و تمرین برای آزمایشگاه

این کتاب درسی دانش و مهارت های مورد نیاز برای درک کامل مهم ترین روش ها و روش های تفکر در فیزیک تجربی را ارائه می دهد. خواننده یاد می گیرد که دستگاه را طراحی، مونتاژ و اشکال زدایی کند، از آن برای گرفتن داده های معنی دار استفاده کند و به دقت در مورد داستانی که توسط داده ها گفته می شود فکر کند.
ویژگی های کلیدی:

به طور مؤثر به دانش‌آموزان کمک می‌کند تا از طریق ترکیبی از تمرین‌های ساختاریافته و در عین حال فکر برانگیز و چالش‌برانگیز، آزمایش‌های طراحی‌شده توسط دانش‌آموز، و کاوش‌های هدایت‌شده اما باز رشد کنند. به وضوح برای دانشجویان کارشناسی توضیح داده شده است، مانند حلقه های زمین، تکنیک های تراز نوری، ارتباطات علمی، و جمع آوری داده ها با استفاده از LabVIEW، Python، یا Arduino.

دارای تجربیات آزمایشگاهی با دقت طراحی شده برای آموزش اصول، از جمله الکترونیک آنالوگ و نویز کم اندازه‌گیری‌ها، الکترونیک دیجیتال، میکروکنترلرها، FPGA، رابط کامپیوتر، اپتیک، تکنیک‌های خلاء، و روش‌های تشخیص ذرات.

طیف وسیعی از آزمایش‌های پیشرفته را برای هر حوزه اصلی فیزیک ارائه می‌دهد. از ماده متراکم گرفته تا فیزیک ذرات همچنین راهنمایی روشنی را برای توسعه دانش‌آموز پروژه‌هایی که در اینجا گنجانده نشده‌اند، ارائه می‌کند.

راهنمای دقیق مربی را برای هر آزمایشگاه ارائه می‌کند، به طوری که مربی می‌تواند با اطمینان آزمایشگاه‌های خارج از حوزه تحقیقاتی خود را آموزش دهد.


توضیحاتی درمورد کتاب به خارجی

This textbook provides the knowledge and skills needed for thorough understanding of the most important methods and ways of thinking in experimental physics. The reader learns to design, assemble, and debug apparatus, to use it to take meaningful data, and to think carefully about the story told by the data.
Key Features:

Efficiently helps students grow into independent experimentalists through a combination of structured yet thought-provoking and challenging exercises, student-designed experiments, and guided but open-ended exploration.

Provides solid coverage of fundamental background information, explained clearly for undergraduates, such as ground loops, optical alignment techniques, scientific communication, and data acquisition using LabVIEW, Python, or Arduino.

Features carefully designed lab experiences to teach fundamentals, including analog electronics and low noise measurements, digital electronics, microcontrollers, FPGAs, computer interfacing, optics, vacuum techniques, and particle detection methods.

Offers a broad range of advanced experiments for each major area of physics, from condensed matter to particle physics. Also provides clear guidance for student development of projects not included here.

Provides a detailed Instructor's Manual for every lab, so that the instructor can confidently teach labs outside their own research area.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
				Preface	#8,0,-32767Acknowledgments	#12,0,-32767Part I Fundamentals	#14,0,-32767	1 Introduction	#16,0,-32767	2 Planning and Carrying Out Experiments	#20,0,-32767		2.1 Literature Research	#20,0,-32767		2.2 Reading Scientific Papers	#21,0,-32767		2.3 Experimental Design	#22,0,-32767		2.4 Modeling	#24,0,-32767		2.5 Important Guidelines for Conducting Experiments	#26,0,-32767			Preparation	#26,0,-32767			Safety	#26,0,-32767			Pilot Testing	#26,0,-32767			Taking Data	#26,0,-32767		2.6 Lab Notebooks	#26,0,-32767		2.7 Troubleshooting	#27,0,-32767	3 Presenting Your Results	#32,0,-32767		3.1 The Process of Scientific Communication	#32,0,-32767		3.2 Data Visualization	#33,0,-32767			Graphs	#33,0,-32767			Images	#35,0,-32767			Diagrams	#35,0,-32767		3.3 Writing Scientific Papers	#36,0,-32767		3.4 Preparing, Delivering, and Listening to Talks	#39,0,-32767			Listening to Talks	#39,0,-32767		3.5 Preparing and Presenting Posters	#40,0,-32767	4 Uncertainty and Statistics	#42,0,-32767		4.1 Random vs. Systematic Errors	#43,0,-32767			Accuracy vs. Precision	#43,0,-32767			Where Do These Systematic Errors Come From?	#44,0,-32767		4.2 Methods of Determining Uncertainty	#45,0,-32767			Instrumental Uncertainty	#45,0,-32767			Multiple Trials	#45,0,-32767		4.3 Standard Error of the Mean and Probability Distributions	#45,0,-32767			4.3.1 Sample vs Population and the Gaussian Distribution	#45,0,-32767			4.3.2 Standard Deviation vs. Standard Error of the Mean	#47,0,-32767			4.3.3 Other Distributions	#47,0,-32767			4.3.4 Median and Mode	#47,0,-32767		4.4 Confidence Intervals	#48,0,-32767		4.5 Student’s t-Distribution	#49,0,-32767		4.6 Significant Figures	#51,0,-32767		4.7 Quantitative Comparisons, or How Not to Be Misled by Error Bars	#51,0,-32767		4.8 Propagating Errors	#52,0,-32767			Direct Substitution	#52,0,-32767			Linear Approximation	#53,0,-32767			Multiple Error Contributions	#53,0,-32767			Addition in Quadrature	#53,0,-32767		4.9 More of the Instrumental Uncertainty Method, Including “Absolute Tolerance”	#54,0,-32767		4.10 Parameter Fitting	#56,0,-32767		4.11 Measurement Errors and χ2 (also known as chi square)	#60,0,-32767			Interpreting χ2	#60,0,-32767			Fitting Routines and How to Make Them Work for You	#61,0,-32767			Outliers and Outlier Rejection	#62,0,-32767		4.12 What to Do When Something Goes Wrong	#63,0,-32767		4.13 Homework Problems	#64,0,-32767		Acknowledgment	#65,0,-32767	5 Scientific Ethics	#66,0,-32767		5.1 A Brief Overview of Scientific Ethics	#67,0,-32767		5.2 FFP: The Cardinal Sins	#67,0,-32767		5.3 Data Ethics	#69,0,-32767		5.4 Publishing and Credit	#71,0,-32767		5.5 Academia	#73,0,-32767		5.6 Equality and Equity	#75,0,-32767		5.7 Financial Considerations	#76,0,-32767		5.8 Safety	#78,0,-32767		5.9 Communication	#79,0,-32767		5.10 Regulations	#81,0,-32767		5.11 Choice of Research	#82,0,-32767Part II Tools of an Experimentalist	#84,0,-32767	6 Analog Electronics	#86,0,-32767		6.1 Introduction	#87,0,-32767		6.2 Input and Output Impedance: Part 1	#87,0,-32767			Motivation, Voltage Dividers	#87,0,-32767			Introduction	#88,0,-32767			What Is an Ideal Battery?	#88,0,-32767			Ground vs. Common, Behavior of Real Batteries with “No Load” vs. with Rload	#89,0,-32767			Definition of Output Impedance	#90,0,-32767			How to Measure Output Impedance	#90,0,-32767			Generalization of Output Impedance, Perfect Buffers	#91,0,-32767			Functional Blocks, the Scientific Debugging Process	#91,0,-32767			Input Impedance	#92,0,-32767			An Example of Complex Input Impedance	#92,0,-32767			Combining the Ideas of Input and Output Impedance: Loading Effects	#93,0,-32767			How to Measure Input Impedance	#94,0,-32767		6.3 Input and Output Impedance: Part 2	#95,0,-32767			How to Calculate Input Impedance by Looking at a Schematic Diagram	#95,0,-32767			How to Calculate Output Impedance by Looking at a Schematic Diagram	#96,0,-32767			Back to Our Motivational Example	#97,0,-32767			Other Examples, Application to Debugging	#97,0,-32767			Input and Output Impedance of Filters	#98,0,-32767		6.4 Amplifier Fundamentals	#99,0,-32767		6.5 Capacitively Coupled Interference	#101,0,-32767		6.6 Common vs. Ground, Inductively Coupled Interference, and Ground Loops	#102,0,-32767			Common vs. Ground	#102,0,-32767			Single-Ended vs. Differential Amplifiers	#103,0,-32767			Inductively Coupled Interference	#104,0,-32767			Background	#104,0,-32767				Interference in a Circuit	#106,0,-32767			How to Minimize It	#106,0,-32767			Ground Loops	#107,0,-32767		6.7 Noise	#109,0,-32767			Noise Amplitude	#110,0,-32767			Combining Noise Sources	#112,0,-32767			Fourier Spectral Characteristics of Noise	#113,0,-32767		6.8 Negative Feedback and Op Amps	#117,0,-32767		6.9 Bode Plots and Oscillations from the Feedback Loop	#117,0,-32767		6.10 Simulation of Analog Circuits	#117,0,-32767		Lab 6A Input and Output Impedance Revisited, Surprising Effects of Capacitance	#117,0,-32767		Introduction	#118,0,-32767		Lab 6B Intermediate-level Scope Mastery	#120,0,-32767		Introduction	#121,0,-32767		Lab 6C Introduction to Amplifiers, Capacitively Coupled Interference, and Feedback Oscillations	#123,0,-32767		Introduction	#123,0,-32767		Lab 6D Inductively Coupled Interference and Ground Loops	#127,0,-32767		Lab 6E Amplifier Noise and Introduction to LabVIEW	#132,0,-32767			Part 1: DC Offsets and Amplifier Noise	#132,0,-32767			Part 2: Introduction to LabVIEW	#134,0,-32767		Lab 6F Lock-In Amplifiers	#137,0,-32767			Introduction and Background	#137,0,-32767			Experimental Procedure	#143,0,-32767		Lab 6G Introduction to Op Amps	#145,0,-32767		Lab 6H More on Op Amps	#145,0,-32767		6.11 Homework Problems	#145,0,-32767	7 Fundamentals of Interfacing Experiments with Computers	#146,0,-32767		7.1 Introduction: The Difference between Digital and Analog	#146,0,-32767			Approaches to Interfacing	#147,0,-32767		7.2 Sampling Rate, Resolution, and the Importance of Analog Amplification	#148,0,-32767		7.3 The Nyquist Frequency, Aliasing, Windowing, and Experimental Fourier Analysis	#149,0,-32767			Aliasing	#152,0,-32767			Windowing	#153,0,-32767		7.4 Preview of the Arduino	#155,0,-32767	8 Digital Electronics	#156,0,-32767		8.1 Introduction	#157,0,-32767		8.2 Truth Tables	#157,0,-32767		8.3 Gates	#158,0,-32767			8.3.1 Basic Gates	#158,0,-32767			8.3.2 Multi-Gate Circuits	#160,0,-32767			8.3.3 CMOS Logic Gates	#161,0,-32767		8.4 Boolean Algebra	#161,0,-32767			8.4.1 Variables	#162,0,-32767			8.4.2 Operators	#162,0,-32767			8.4.3 Expressions	#162,0,-32767			8.4.4 Algebraic Relations	#162,0,-32767		8.5 Logic Design	#164,0,-32767			8.5.1 Sum-of-Products	#164,0,-32767			8.5.2 Product-of-Sums	#165,0,-32767		8.6 Common Logic Functions	#166,0,-32767			8.6.1 Coders/Decoders	#166,0,-32767		8.7 Arithmetic Logic	#168,0,-32767			8.7.1 Half-Adder	#168,0,-32767			8.7.2 The Full-Adder	#168,0,-32767		8.8 Sequential Logic	#169,0,-32767			8.8.1 The Flip-Flop	#169,0,-32767			8.8.2 Switch De-Bouncing with the  Flip-Flop	#170,0,-32767			8.8.3 Simple Counters	#172,0,-32767		8.9 Synchronous Logic	#173,0,-32767			8.9.1 Describing Synchronous Systems	#174,0,-32767			8.9.2 Designing Synchronous Circuits with D-Type Flip-Flops	#175,0,-32767			8.9.3 Excluded States in Synchronous Logic	#176,0,-32767			8.9.4 External Inputs	#176,0,-32767			8.9.5 Resetting Synchronous Circuits	#177,0,-32767		8.10 Introduction to Verilog	#178,0,-32767		Lab 8A Digital Logic	#178,0,-32767		8A.1 Combinatorial Logic	#178,0,-32767		8A.2 Sequential Logic	#180,0,-32767		8A.3 Synchronous Sequential Machines	#182,0,-32767		Lab 8B Controlling the World with Arduino	#183,0,-32767		Lab 8C Interfacing an Experiment with Arduino	#195,0,-32767		Lab 8D Arduino Motor Control	#201,0,-32767		Lab 8E Field Programmable Gate Arrays (FPGAs)	#206,0,-32767	9 Data Acquisition and Experiment Control with Python	#208,0,-32767		Learning Goals	#209,0,-32767		9.1 Overview	#209,0,-32767			9.1.1 Automation Technologies	#209,0,-32767			9.1.2 What This Chapter Is Really About	#211,0,-32767		9.2 Safety Precautions	#211,0,-32767			9.2.1 Automation Risks	#211,0,-32767		9.3 Python: An Introduction and Primer	#212,0,-32767			9.3.1 Programming Best Practices	#212,0,-32767			9.3.2 Self-Guided Python Tutorial	#214,0,-32767			9.3.3 Working with Python Files	#217,0,-32767		9.4 Warm-up Experiment	#219,0,-32767			9.4.1 Materials	#219,0,-32767			9.4.2 Complete Warm-Up Experiment	#220,0,-32767		9.5 Experiment	#222,0,-32767			9.5.1 Materials	#223,0,-32767			9.5.2 Hardware Limitations	#223,0,-32767			9.5.3 Experimental Setup	#224,0,-32767			9.5.4 Understanding LabJack Streaming	#224,0,-32767			9.5.5 Plan the Software Workflow	#224,0,-32767			9.5.6 Create Automation Script	#228,0,-32767			9.5.7 Performing Useful Science with Your Experimental System	#228,0,-32767		9.6 Advanced Lab: Leverage the PLACE Framework	#229,0,-32767		9.7 Homework Problems	#237,0,-32767	10 Basic Optics Techniques and Hardware	#240,0,-32767		10.1 Laser Safety	#241,0,-32767		10.2 Lasers	#242,0,-32767		10.3 Optical Hardware	#242,0,-32767			Optical Tables and Breadboards	#242,0,-32767			Posts, Postholders, and Pedestals	#243,0,-32767		10.4 Optical Elements	#245,0,-32767			Lenses	#246,0,-32767			Mirrors	#247,0,-32767			Neutral Density Filters	#248,0,-32767			Beamsplitters	#248,0,-32767			Polarizers and Waveplates	#249,0,-32767		10.5 Beam Expanders	#251,0,-32767		10.6 Alignment	#251,0,-32767		10.7 Protection, Storage, and Cleaning	#253,0,-32767		10.8 Organization	#254,0,-32767			Labeling	#254,0,-32767			Storage	#255,0,-32767			Tools Organization	#255,0,-32767		Lab 10A The Quantum Eraser, Simple Version	#255,0,-32767		10A.1 Introduction	#255,0,-32767			Classical Polarization and Interference	#255,0,-32767			Quantum Polarization and Interference	#256,0,-32767		10A.2 Precision Optical Alignments	#256,0,-32767			Walking the Beam	#256,0,-32767			Aligning a Laser with the Grid of Holes	#256,0,-32767		10A.3 Mach-Zender Interferometer and the Quantum Eraser	#257,0,-32767			Insert Polarizing Beam Splitter Cube and Align the Beam with the Table	#257,0,-32767			Insert Mirrors 3 and 4, and Align the Beams	#257,0,-32767			Insert NPBS cube and Align the Beams with the Table	#258,0,-32767			Adding the Final Polarizer	#258,0,-32767			Understanding Interference, and the “Quantum Eraser”	#259,0,-32767	11 Laser Beams, Polarization, and Interference	#260,0,-32767		11.1 Introduction	#260,0,-32767			Learning Goals	#260,0,-32767			Additional Reading	#261,0,-32767			Pre-Lab Questions	#261,0,-32767		11.2 Polarization	#261,0,-32767		Lab 11A Polarization and Jones Vectors	#265,0,-32767			11A.1 Optical Activity	#265,0,-32767			11A.2 Quarter Wave Plates	#266,0,-32767			11A.3 Circular Polarizer	#266,0,-32767			11A.4 Elliptical Polarization	#267,0,-32767			11A.5 Brewster’s Angle and s- and p-Polarizations	#268,0,-32767		11.3 Gaussian Beams	#268,0,-32767		Lab 11B Laser Beams	#271,0,-32767			11B.1 Focusing a Beam and f-Number	#271,0,-32767			11B.2 The Airy Pattern and How to Clean Up a Beam	#272,0,-32767			11B.3 The Mathematical Structure of Gaussian Beams	#272,0,-32767	12 Vacuum	#276,0,-32767		12.1 Introduction	#276,0,-32767	13 Particle Detection	#280,0,-32767		13.1 Introduction to Radioactivity	#280,0,-32767			13.1.1 Introduction	#280,0,-32767			13.1.2 Activity	#281,0,-32767				Concept Tests	#283,0,-32767			13.1.3 Safety	#283,0,-32767		13.2 Detecting Radiation	#284,0,-32767			13.2.1 GM Tubes1,	#284,0,-32767				Concept Test	#286,0,-32767			13.2.2 Scintillator-Based Detectors1,9	#286,0,-32767				Concept Test	#287,0,-32767		13.3 Interactions with Matter	#288,0,-32767			Concept Test	#289,0,-32767		13.4 Counting Statistics	#289,0,-32767			Concept Test	#292,0,-32767		13.5 Homework Problems	#292,0,-32767		Lab 13A Experiment on Counting Statistics	#294,0,-32767			13A.1 Objectives	#294,0,-32767			13A.2 Safety	#295,0,-32767			13A.3 Experiments	#295,0,-32767				13A.3.1 Background Measurement	#295,0,-32767				13A.3.2 Poisson and Gaussian Distributions	#296,0,-32767				13A.3.3 Measurement of GM Tube Dead Time	#296,0,-32767				13A.3.4 Measuring Count Rate vs. Distance	#297,0,-32767				13A.3.5 Measuring Count Rate vs. Absorber Thickness	#297,0,-32767Part III Fields of Physics	#300,0,-32767	14 Development and Supervision of Independent Projects	#302,0,-32767		14.1 Introduction	#302,0,-32767		14.2 Project Proposal	#303,0,-32767			14.2.1 Research Goals	#303,0,-32767			14.2.2 Literature Review	#305,0,-32767			14.2.3 Work Plan	#305,0,-32767			14.2.4 Equipment and Infrastructure	#307,0,-32767			14.2.5 Summary	#309,0,-32767		14.3 Additional Elements to Consider for an Independent Project	#309,0,-32767			14.3.1 Navigating Group Dynamics	#309,0,-32767			14.3.2 Weekly Planning	#310,0,-32767			14.3.3 Troubleshooting	#311,0,-32767			14.3.4 Summary	#311,0,-32767	15 Condensed Matter Physics	#312,0,-32767		15.1 Introduction	#312,0,-32767		15.2 Equivalent Noise Bandwidth for a Measurement Chain	#313,0,-32767			Measuring B	#313,0,-32767				Method 1: Entire Chain	#313,0,-32767				Method 2: Values of f3dB for Each Filter or Effective Filter	#314,0,-32767		Lab 15A Quantitative Measurement of Johnson Noise	#314,0,-32767			Pre-Lab Question 15A.1	#315,0,-32767				Experimental Considerations	#317,0,-32767			Pre-Lab Question 15A.2: Why Should the Box Be Grounded?	#318,0,-32767			Pre-Lab Question 15A.3	#319,0,-32767				Uncertainty Analysis	#319,0,-32767	16 Biophysics	#320,0,-32767		16.1 Introduction	#320,0,-32767		Lab 16A Navigation in the Drosophila larva	#321,0,-32767			Chemical Sensing and Response	#321,0,-32767			Hardware Assembly	#322,0,-32767			Computer Software	#323,0,-32767			Odor Stimulus Delivery	#323,0,-32767			An Alternative Stimulus	#323,0,-32767			Fly Maintenance and Larva Selection	#324,0,-32767			Control Experiments	#324,0,-32767			Chemotaxis Experiments	#327,0,-32767		Lab 16B Biophysics: Modeling and Stimulating Behavior	#328,0,-32767			Random Walks	#329,0,-32767			Diffusion	#330,0,-32767			Two-Dimensional Random Walks	#331,0,-32767			Simulated Control Experiments	#332,0,-32767			Simulated Chemotaxis: Elements of Navigation Strategy	#335,0,-32767		Lab 16C Biomechanics: Modeling Physical Actions	#336,0,-32767	17 Non-Linear, Granular, and Fluid Physics	#340,0,-32767		17.1 Introduction	#341,0,-32767			Further Reading	#342,0,-32767		Lab 17A: Drop Pinch-Off 	#342,0,-32767			Introduction	#342,0,-32767			Objectives Shared with Other Areas of Experimental Physics	#342,0,-32767			Goals of This Experiment	#342,0,-32767			Time Requirements	#343,0,-32767			Safety Precautions	#343,0,-32767			Readings	#343,0,-32767			Suggested Additional References	#343,0,-32767			Introduction to Fluid Dynamics	#343,0,-32767				Exercise	#344,0,-32767			Surface Tension	#344,0,-32767				Exercises	#344,0,-32767			A Simple Model of Drop Pinch-Off	#345,0,-32767				Exercises	#345,0,-32767			Polymers and the Maxwell Model	#346,0,-32767				Exercises	#347,0,-32767			Part I: Low-Viscosity Newtonian Pinch-Off	#347,0,-32767				The Trigger and Strobe	#348,0,-32767				Preparing the Newtonian Fluid




نظرات کاربران