دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بهینه سازی، تحقیق در عملیات. ویرایش: 2 نویسندگان: Hector Guerrero سری: ISBN (شابک) : 9783030012786 ناشر: Springer سال نشر: 2019 تعداد صفحات: 358 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
کلمات کلیدی مربوط به کتاب تجزیه و تحلیل داده های اکسل: مدل سازی و شبیه سازی: شبیه سازی، اکسل
در صورت تبدیل فایل کتاب Excel Data Analysis: Modeling and Simulation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل داده های اکسل: مدل سازی و شبیه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مقدمه ای جامع و خواندنی برای تجارت مدرن و تجزیه و تحلیل داده ارائه می دهد. این ابزار مبتنی بر استفاده از اکسل است، ابزاری که تقریباً همه دانشجویان و متخصصان به آن دسترسی دارند. توضیحات بر درک تکنیک ها و کاربرد مناسب آنها متمرکز شده است و با انبوهی از تمرینات درون فصلی و پایانی فصل تکمیل می شود. این کتاب علاوه بر روش های آماری عمومی شامل شبیه سازی و بهینه سازی مونت کارلو نیز می باشد. ویرایش دوم به طور کامل اصلاح شده است: موضوعات، تمرین ها و مثال های جدید اضافه شده است و خوانایی بیشتر بهبود یافته است. این کتاب عمدتاً برای دانشآموزان در زمینه تجارت، اقتصاد و دولت و همچنین افراد حرفهای در نظر گرفته شده است که نیاز به مقدمه دقیقتری برای تجزیه و تحلیل کسبوکار و دادهها دارند – در عین حال باید موضوع را به سرعت و بدون توضیحات بیش از حد آکادمیک بیاموزند.
This book offers a comprehensive and readable introduction to modern business and data analytics. It is based on the use of Excel, a tool that virtually all students and professionals have access to. The explanations are focused on understanding the techniques and their proper application, and are supplemented by a wealth of in-chapter and end-of-chapter exercises. In addition to the general statistical methods, the book also includes Monte Carlo simulation and optimization. The second edition has been thoroughly revised: new topics, exercises and examples have been added, and the readability has been further improved. The book is primarily intended for students in business, economics and government, as well as professionals, who need a more rigorous introduction to business and data analytics – yet also need to learn the topic quickly and without overly academic explanations.
Preface Why Does the World Need-Excel Data Analysis, Modeling, and Simulation? Who Benefits from This Book? Key Features of This Book Second Edition Acknowledgements Contents About the Author Chapter 1: Introduction to Spreadsheet Modeling 1.1 Introduction 1.2 What´s an MBA to do? 1.3 Why Model Problems? 1.4 Why Model Decision Problems with Excel? 1.5 The Feng Shui of Spreadsheets 1.6 A Spreadsheet Makeover 1.6.1 Julia´s Business Problem-A Very Uncertain Outcome 1.6.2 Ram´s Critique 1.6.3 Julia´s New and Improved Workbook 1.7 Summary Key Terms Problems and Exercises Chapter 2: Presentation of Quantitative Data: Data Visualization 2.1 Introduction 2.2 Data Classification 2.3 Data Context and Data Orientation 2.3.1 Data Preparation Advice 2.4 Types of Charts and Graphs 2.4.1 Ribbons and the Excel Menu System 2.4.2 Some Frequently Used Charts 2.4.3 Specific Steps for Creating a Chart 2.5 An Example of Graphical Data Analysis and Presentation 2.5.1 Example-Tere´s Budget for the 2nd Semester of College 2.5.2 Collecting Data 2.5.3 Summarizing Data 2.5.4 Analyzing Data 2.5.5 Presenting Data 2.6 Some Final Practical Graphical Presentation Advice 2.7 Summary Key Terms Problems and Exercises Chapter 3: Analysis of Quantitative Data 3.1 Introduction 3.2 What Is Data Analysis? 3.3 Data Analysis Tools 3.4 Data Analysis for Two Data Sets 3.4.1 Time Series Data: Visual Analysis 3.4.2 Cross-Sectional Data: Visual Analysis 3.4.3 Analysis of Time Series Data: Descriptive Statistics 3.4.4 Analysis of Cross-Sectional Data: Descriptive Statistics 3.5 Analysis of Time Series Data: Forecasting/Data Relationship Tools 3.5.1 Graphical Analysis 3.5.2 Linear Regression 3.5.3 Covariance and Correlation 3.5.4 Other Forecasting Models 3.5.5 Findings 3.6 Analysis of Cross-Sectional Data: Forecasting/Data Relationship Tools 3.6.1 Findings 3.7 Summary Key Terms Problems and Exercises Chapter 4: Presentation of Qualitative Data-Data Visualization 4.1 Introduction-What Is Qualitative Data? 4.2 Essentials of Effective Qualitative Data Presentation 4.2.1 Planning for Data Presentation and Preparation 4.3 Data Entry and Manipulation 4.3.1 Tools for Data Entry and Accuracy 4.3.2 Data Transposition to Fit Excel 4.3.3 Data Conversion with the Logical IF 4.3.4 Data Conversion of Text from Non-Excel Sources 4.4 Data Queries with Sort, Filter, and Advanced Filter 4.4.1 Sorting Data 4.4.2 Filtering Data 4.4.3 Filter 4.4.4 Advanced Filter 4.5 An Example 4.6 Summary Key Terms Problems and Exercises Chapter 5: Analysis of Qualitative Data 5.1 Introduction 5.2 Essentials of Qualitative Data Analysis 5.2.1 Dealing with Data Errors 5.3 PivotChart or PivotTable Reports 5.3.1 An Example 5.3.2 PivotTables 5.3.3 PivotCharts 5.4 TiendaMía.com Example: Question 1 5.5 TiendaMía.com Example: Question 2 5.6 Summary Key Terms Problems and Exercises Chapter 6: Inferential Statistical Analysis of Data 6.1 Introduction 6.2 Let the Statistical Technique Fit the Data 6.3 χ2-Chi-Square Test of Independence for Categorical Data 6.3.1 Tests of Hypothesis-Null and Alternative 6.4 z-Test and t-Test of Categorical and Interval Data 6.5 An Example 6.5.1 z-Test: 2 Sample Means 6.5.2 Is There a Difference in Scores for SC Non-prisoners and EB Trained SC Prisoners? 6.5.3 t-Test: Two Samples Unequal Variances 6.5.4 Do Texas Prisoners Score Higher than Texas Non-prisoners? 6.5.5 Do Prisoners Score Higher Than Non-prisoners Regardless of the State? 6.5.6 How Do Scores Differ Among Prisoners of SC and Texas Before Special Training? 6.5.7 Does the EB Training Program Improve Prisoner Scores? 6.5.8 What If the Observations Means Are the Same, But We Do Not See Consistent Movement of Scores? 6.5.9 Summary Comments 6.6 Confidence Intervals for Sample Statistics 6.6.1 What Are the Ingredients of a Confidence Interval? 6.6.2 A Confidence Interval Example 6.6.3 Single Sample Hypothesis Tests Are Similar to Confidence Intervals 6.7 ANOVA 6.7.1 ANOVA: Single Factor Example 6.7.2 Do the Mean Monthly Losses of Reefers Suggest That the Means Are Different for the Three Ports? 6.8 Experimental Design 6.8.1 Randomized Complete Block Design Example 6.8.2 Factorial Experimental Design Example 6.9 Summary Key Terms Problems and Exercises Chapter 7: Modeling and Simulation: Part 1 7.1 Introduction 7.1.1 What Is a Model? 7.2 How Do We Classify Models? 7.3 An Example of Deterministic Modeling 7.3.1 A Preliminary Analysis of the Event 7.4 Understanding the Important Elements of a Model 7.4.1 Pre-modeling or Design Phase 7.4.2 Modeling Phase 7.4.3 Resolution of Weather and Related Attendance 7.4.4 Attendees Play Games of Chance 7.4.5 Fr. Efia´s What-if Questions 7.4.6 Summary of OLPS Modeling Effort 7.5 Model Building with Excel 7.5.1 Basic Model 7.5.2 Sensitivity Analysis 7.5.3 Controls from the Forms Control Tools 7.5.4 Option Buttons 7.5.5 Scroll Bars 7.6 Summary Key Terms Problems and Exercises Chapter 8: Modeling and Simulation: Part 2 8.1 Introduction 8.2 Types of Simulation and Uncertainty 8.2.1 Incorporating Uncertain Processes in Models 8.3 The Monte Carlo Sampling Methodology 8.3.1 Implementing Monte Carlo Simulation Methods 8.3.2 A Word About Probability Distributions 8.3.3 Modeling Arrivals with the Poisson Distribution 8.3.4 VLOOKUP and HLOOKUP Functions 8.4 A Financial Example-Income Statement 8.5 An Operations Example-Autohaus 8.5.1 Status of Autohaus Model 8.5.2 Building the Brain Worksheet 8.5.3 Building the Calculation Worksheet 8.5.4 Variation in Approaches to Poisson Arrivals: Consideration of Modeling Accuracy 8.5.5 Sufficient Sample Size 8.5.6 Building the Data Collection Worksheet 8.5.7 Results 8.6 Summary Key Terms Problems and Exercises Chapter 9: Solver, Scenarios, and Goal Seek Tools 9.1 Introduction 9.2 Solver-Constrained Optimization 9.3 Example-York River Archaeology Budgeting 9.3.1 Formulation 9.3.2 Formulation of YRA Problem 9.3.3 Preparing a Solver Worksheet 9.3.4 Using Solver 9.3.5 Solver Reports 9.3.6 Some Questions for YRA 9.4 Scenarios 9.4.1 Example 1-Mortgage Interest Calculations 9.4.2 Example 2-An Income Statement Analysis 9.5 Goal Seek 9.5.1 Example 1-Goal Seek Applied to the PMT Cell 9.5.2 Example 2-Goal Seek Applied to the CUMIPMT Cell 9.6 Summary Key Terms Problems and Exercises