دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Fadi Al-Turjman, Manoj Kumar, Thompson Stephan, Akashdeep Bhardwaj سری: ISBN (شابک) : 3030820785, 9783030820787 ناشر: Springer سال نشر: 2022 تعداد صفحات: 291 [283] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Evolving Role of AI and IoMT in the Healthcare Market به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقش در حال تحول هوش مصنوعی و IoMT در بازار مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
This book is a proficient guide to understanding artificial intelligence (IoT) and the Internet of Medical Things (IoMT) in healthcare. The book provides a comprehensive study on the applications of AI and IoT in various medical domains. The book shows how the implementation of innovative solutions in healthcare is beneficial, and IoT, together with AI, are strong drivers of the digital transformation regardless of what field the technologies are applied in. Therefore, this book provides a high level of understanding with the emerging technologies on the Internet of Things, wearable devices, and AI in IoMT, which offers the potential to acquire and process a tremendous amount of data from the physical world.
About the Book Contents About the Editors Chapter 1: A Study of Time Series Forecasting Techniques for COVID-19 Trends 1.1 Introduction 1.2 Data Source 1.3 Exploratory Data Analysis 1.3.1 Pearson´s Correlation Coefficient 1.3.2 Autocorrelation 1.4 Data Cleaning and Preparation 1.4.1 NaN 1.4.2 Missing Values 1.5 Forecasting Models 1.5.1 Baseline Models 1.5.1.1 Mean-Based Forecasting 1.5.1.1.1 Theory 1.5.1.1.2 Application to Data (Fig. 1.3) 1.5.1.1.3 Remarks 1.5.1.2 Naïve Forecasting 1.5.1.2.1 Theory 1.5.1.2.2 Application to Data (Fig. 1.4) 1.5.1.2.3 Remarks 1.5.1.3 Drift-Based Forecasting 1.5.1.3.1 Theory 1.5.1.3.2 Application to Data (Fig. 1.5) 1.5.1.3.3 Remarks 1.5.2 Exponential Smoothing Models 1.5.2.1 Single Exponential Smoothing 1.5.2.1.1 Theory 1.5.2.1.2 Application to Data (Fig. 1.6) 1.5.2.1.3 Remarks 1.5.2.2 Double Exponential Smoothing 1.5.2.2.1 Double Exponential Smoothing: Additive Trend Theory Application to Data (Figs. 1.7 and 1.8) Remarks 1.5.2.2.2 Double Exponential Smoothing: Multiplicative Trend Theory Application to Data (Figs. 1.9 and 1.10) Remarks 1.5.2.3 Triple Exponential Smoothing 1.5.3 ARIMA 1.5.3.1 Theory 1.5.3.2 Application to Data (Fig. 1.11) 1.5.3.3 Remarks 1.5.4 LSTM 1.5.4.1 Theory 1.5.4.2 Application to Data (Fig. 1.12) 1.5.4.3 Remarks 1.6 Evaluation and Comparison of Forecasting Models 1.6.1 Performance Metrics 1.6.2 Model Evaluation and Comparison 1.6.2.1 Time Series 1: India: Total Cases 1.6.2.2 Time Series 2: India: New Cases 1.6.2.3 Time Series 3: China: Total Cases 1.6.2.4 Time Series 4: China: New Cases 1.6.2.5 Time Series 5: United States: Total Cases 1.6.2.6 Time Series 6: United States: New Cases 1.7 Limitations 1.7.1 Limitations in Data 1.7.2 Limitations in Modelling 1.8 Conclusion References Chapter 2: EEG Analysis Using Bio-Inspired Metaheuristic Approach 2.1 Introduction 2.2 Generalized System Model for Neurological Disease Detection 2.3 Metaheuristic Approaches 2.4 Application of BI Approaches in Neurological Disease Detection 2.4.1 Alzheimer´s Disease Detection Using BI 2.4.2 Autism Disease Detection Using BI 2.4.3 Parkinson Disease Detection Using BI 2.4.4 Epilepsy Disease Detection Using BI 2.5 Conclusion References Chapter 3: Secure Recommendation System for Healthcare Applications Using Artificial Intelligence 3.1 Introduction 3.2 Secure Recommendation System 3.2.1 Cloud Users with Different Interests 3.2.2 Trusted Third Party 3.2.3 Cloud Service Provider 3.2.4 Cloud Users with the Same Interest 3.3 Tag Matching Mechanism 3.3.1 Setup 3.3.2 Key Generation 3.3.3 Communication Key Generation 3.3.4 Encryption 3.3.5 Decryption 3.4 Security Analysis 3.4.1 Impersonation Attack 3.4.2 Replay Attack 3.4.3 Man in the Middle Attack 3.4.4 Eavesdropping 3.4.5 DDoS Attack 3.5 Experimental Analysis 3.5.1 Phase of Key Computation 3.5.2 Phase of Encryption 3.5.3 Phase of Decryption 3.5.4 Communication Complexity 3.6 Conclusions and Future Works References Chapter 4: IoT Based Healthcare: A Review 4.1 Introduction 4.2 Literature Review 4.3 Applications of IoT in Healthcare 4.3.1 IoT Based Diabetes Management 4.3.2 IoT Devices for Asthma Management 4.3.3 IoT for Mental Health 4.3.4 IoT Role in Pandemic Situation 4.3.5 IoT for Sleep Disorder 4.4 Working of IOT Devices 4.5 Role of Cloud in IoT Based Healthcare 4.6 Benefits and Challenges 4.7 Conclusion and Future Scope References Chapter 5: Diagnosing Alzheimer´s Disease Using Deep Learning Techniques 5.1 Introduction 5.2 Brain Structure 5.2.1 Cerebral Cortex 5.2.2 Corpus Callosum 5.2.3 Cerebellum 5.2.4 Brain Stem 5.2.5 Limbic System 5.2.6 Amygdala 5.2.7 Hippocampus 5.2.8 Thalamus 5.2.9 Hypothalamus 5.3 Alzheimer Disease-Introduction 5.3.1 Some Statistics 5.3.2 Impairments in Alzheimer Disease 5.4 Alzheimer´s Disease Vs. Dementia Vs. Normal Aging 5.4.1 Stages of Alzheimer 5.5 Different Procedure to Find Alzheimer Disease 5.5.1 Image Capturing 5.5.2 Cerebrospinal Fluid (CSF) Procedure 5.5.3 Deep Learning Techniques 5.5.3.1 Activation Function 5.5.3.1.1 Step Function 5.5.3.1.2 Sigmoid Function 5.5.3.1.3 Tanh Function 5.5.3.1.4 ReLU Function 5.5.3.1.5 Neural Networks 5.5.3.1.6 Convolutional Neural Networks (CNN) 5.5.3.1.7 Pooling 5.5.3.1.8 Recurrent Neural Networks (RNN) 5.6 Deep Learning Methods Comparison 5.7 Conclusion References Chapter 6: Artificial Intelligence and Blockchain: The Future of Healthcare 6.1 Introduction 6.1.1 Introduction to Artificial Intelligence 6.1.2 How Does Artificial Intelligence Work? 6.1.3 Uses of A.I. 6.1.3.1 Narrow A.I. 6.1.3.2 Artificial A.I. 6.1.4 Components of Artificial Intelligence 6.1.5 Artificial Intelligence and Healthcare 6.1.5.1 Various Areas of Expertise in Medicine Have Demonstrated an Improvement in Studies on A.I. 6.1.5.1.1 Radiology 6.1.5.1.2 Psychiatry 6.1.5.1.3 Screening 6.1.5.1.4 Disease Diagnosis 6.1.5.1.5 Telehealth 6.1.5.1.6 Electronic Health Record 6.1.5.1.7 Primary Care 6.1.5.1.8 Drug Interaction 6.1.5.1.9 Robo Dentist 6.1.5.1.10 AI Doctors 6.1.5.1.11 Non-adherence 6.2 Introduction to Blockchain 6.2.1 Features of Blockchain 6.2.1.1 Accuracy of Chain 6.2.1.2 Cost Reductions 6.2.1.3 Decentralization 6.2.1.4 Private Transactions 6.2.1.5 Efficient Transactions 6.2.1.6 Transparency 6.2.1.7 Secure Transactions 6.2.2 Types of Blockchain 6.2.2.1 Public Blockchain 6.2.2.2 Sidechains 6.2.2.3 Proprietary Blockchain 6.2.2.4 Hybrid Blockchain 6.2.3 Uses of Blockchain 6.2.3.1 Cryptocurrency 6.2.3.2 Financial Services 6.2.3.3 Domain Names 6.2.3.4 Video Games 6.2.4 Blockchain and Healthcare 6.2.5 Companies Installed Blockchain 6.2.5.1 BurstIQ 6.2.5.2 Medical Chain 6.2.5.3 Factom 6.2.5.4 Guardtime 6.2.6 Medical Records and Health Plans 6.2.6.1 Simply Vital Health 6.2.6.2 Robomed 6.2.6.3 Coral Health 6.2.6.4 Patientory 6.2.7 Supply Chain Management Associated with Blockchain 6.2.7.1 Blockpharma 6.2.7.2 Chronicled 6.2.7.3 Tierion 6.2.7.4 CDC 6.2.8 Medical Credential Tracking 6.2.8.1 Drug Trials 6.2.8.2 Payment Through Crypto 6.2.8.3 Access of Medical Records 6.3 Conclusion References Chapter 7: Role of Artificial Intelligence for Skin Cancer Detection 7.1 Introduction 7.2 Related Works 7.2.1 Detection and Analysis of the Type of Skin Cancer 7.2.2 HCI: Human-Computer Interaction 7.3 Comparison Table (Tables 7.1 and 7.2) 7.4 Conclusion References Chapter 8: Evolving IoT and Green IoT in Healthcare Perspective 8.1 Introduction 8.1.1 Genesis of IoT 8.2 Advantages of IoT 8.2.1 Information 8.2.2 Tracking 8.2.3 Time 8.2.4 Money 8.3 Challenges of IoT Implementation 8.3.1 Technology 8.3.1.1 Security 8.3.1.2 Connectivity 8.3.1.3 Compatibility and Longevity 8.3.1.4 Standards 8.3.1.5 Intelligent Analysis 8.4 Application of IoT 8.4.1 Digital Ceiling 8.5 Architecture of IoT 8.5.1 Physical Device and Controllers (The Things of IoT) 8.5.2 Connectivity (Communication and Processing Unit) 8.5.3 Edge Computing 8.5.4 Data Accumulation (Storage) 8.5.5 Data Abstraction (Aggregation Access) 8.5.6 Application (Reporting, Analytics, Control) 8.5.7 Collaboration Process (Involving Process of People and Business) 8.6 IoT in Healthcare Domain 8.6.1 Future Success of IoT in Healthcare 8.7 Application of Healthcare IoT 8.7.1 U-Healthcare IoT 8.7.2 Automatic/Controller Wheelchair 8.7.3 WBAN 8.8 Green IoT 8.9 Energy Efficient Approaches for Enabling Green IOT 8.9.1 Industrial Automation 8.9.1.1 Smart Industrial Plants 8.9.1.2 Smart Plant Monitoring 8.9.2 Health and Living 8.9.2.1 Real-Time Following 8.9.2.2 Smart Information Assortment 8.9.3 Habitat Monitoring 8.9.3.1 Smart Animal 8.9.3.2 Smart Building 8.9.4 Energy 8.9.5 Transportation 8.9.5.1 Smart Parking 8.9.5.2 Smart Traffic 8.10 Green IoT Association in Healthcare 8.10.1 Existing WBAN Technologies 8.10.2 Existing Solar Energy Harvesting of IoT 8.10.2.1 Green Energy Wireless Charging 8.10.2.2 Photovoltaic Cell Energy Harvesting 8.11 Conclusion 8.12 Future Scope References Chapter 9: A Review in Wavelet Transforms Based Medical Image Fusion 9.1 Introduction 9.2 Wavelet Transform 9.2.1 Discrete Wavelet Transform (DWT) 9.2.2 Multiresolution Analysis 9.3 Wavelet and Bio Inspired Computation Based Fusion 9.4 Result and Discussions 9.5 Conclusion References Chapter 10: Cloud-Based Intelligent Internet of Medical Things Applications for Healthcare Systems 10.1 Introduction 10.1.1 Smart Ambulance 10.1.2 Managing Hospitals Medical Record 10.1.3 Digital Consultation 10.1.4 Virtual Nurse 10.1.5 Prediction for the Risk of Coronary Heart Disease 10.1.6 Human Sitting Posture Recognition System 10.2 Conclusion References Chapter 11: Development of Intelligent Approach to Detect Retinal Microaneurysm 11.1 Introduction 11.1.1 Diabetic Retinopathy Stages 11.1.2 Techniques of Fundus Imaging 11.1.2.1 Red-Free Fundus Photography 11.1.2.2 Colour Fundus Imaging 11.1.2.3 Fundus Autofluorescence 11.1.3 Retinal Imaging 11.1.4 Modalities of Retina Fundus Imaging 11.1.4.1 Standard View 11.1.4.2 Ultra-Wide Field 11.1.4.3 Smartphone-Based Images 11.2 Related Works 11.3 Methodology 11.3.1 Pre-Processing 11.3.2 Mapping of Images to Text 11.3.3 MA Detection Using Multi Sieving Convolution Neural Networks 11.3.4 Probabilistic Neural Networks 11.4 Result and Discussion 11.4.1 Findings 11.5 Conclusion and Future Work References Chapter 12: Automatic Brain Tumor Detection Using Machine Learning and Mixed Supervision 12.1 Introduction 12.2 Preliminary Discussion 12.2.1 Why Do We Choose MRI for Detecting Brain Tumors 12.2.2 Methods 12.2.2.1 Manual Segmentation 12.2.2.2 Semi-Automatic Segmentation 12.2.2.3 Fully Automatic Segmentation 12.2.3 Problem Statement 12.2.4 Image Segmentation Techniques 12.2.4.1 Threshold Feature-Based Segmentation 12.2.4.2 Region-Based Segmentation 12.2.4.3 Feature-Based Clustering 12.2.4.4 Edge-Based Segmentation 12.3 Methodology 12.3.1 Preprocessing 12.3.2 Enhancement 12.3.3 Skull Stripping 12.3.4 Feature Extraction 12.3.5 Tumor Classification Using KNN 12.4 Results 12.5 Conclusion References Chapter 13: Architecture for Multisensor Fusion and Integration for Diabetes Monitoring 13.1 Introduction to Wireless Sensor Network 13.1.1 Architecture 13.1.2 Characteristics 13.2 Wireless Sensor Network in Health Care 13.2.1 Open Problems 13.3 Glucose Monitoring 13.3.1 Requirement 13.3.2 Existing Architecture 13.4 Error Correction and Prediction 13.5 Results and Discussion 13.6 Scope for Future Work References Index