دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Paul Schmid- Hempel
سری:
ISBN (شابک) : 9780198832140, 019883215X
ناشر: Oxford University Press
سال نشر: 2021
تعداد صفحات: 572
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Evolutionary Parasitology. The Integrated Study of Infections, Immunology, Ecology, and Genetics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انگل شناسی تکاملی. مطالعه یکپارچه عفونت ها، ایمونولوژی، اکولوژی و ژنتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Evolutionary Parasitology: The Integrated Study of Infections, Immunology, Ecology, and Genetics Copyright Preface Contents List of common acronyms Glossary Chapter 1: Parasites and their significance 1.1 The Panama Canal 1.2 Some lessons provided by yellow fever 1.2.1 Parasites have different life cycles and transmission modes 1.2.2 Not all host individuals, and not all parasite strains, are the same 1.2.3 Physiological and molecular mechanisms underlie the infection 1.2.4 Parasites and hosts are populations 1.2.5 Parasites can be controlled when we understand them 1.3 Parasites are not a threat of the past Chapter 2: The study of evolutionary parasitology 2.1 The evolutionary process 2.2 Questions in evolutionary biology 2.3 Selection and units that evolve 2.4 Life history 2.5 Studying adaptation 2.5.1 Optimality 2.5.2 Evolutionarily stable strategies (ESS) 2.5.3 Comparative studies Box 2.1 The basic evolutionary forces Box 2.2 The disease space Chapter 3: The diversity and natural history of parasites 3.1 The ubiquity of parasites 3.2 A systematic overview of parasites 3.2.1 Viruses 3.2.2 Prokaryotes 3.2.2.1 Archaea 3.2.2.2 Bacteria 3.2.3 The basal eukaryotes 3.2.4 Protozoa 3.2.5 Fungi 3.2.6 Nematodes (roundworms) 3.2.7 Flatworms 3.2.8 Acanthocephala 3.2.9 Annelida 3.2.10 Crustacea 3.2.11 Mites (Acari), ticks, lice (Mallophaga, Anoplura) 3.2.12 Parasitic insects (parasitoids) 3.3 The evolution of parasitism 3.3.1 Evolution of viruses 3.3.2 Evolution of parasitism in nematodes 3.4 The diversity and evolution of parasite life cycles 3.4.1 Steps in a parasite’s life cycle 3.4.2 Ways of transmission 3.4.3 Complex life cycles 3.4.4 The evolution of complex parasite life cycles 3.4.5 Example: trypanosomes 3.4.6 Example: helminths Box 3.1 Types of parasites Chapter 4: The natural history of defences 4.1 The defence sequence 4.1.1 Pre-infection defences 4.1.1.1 Avoidance behaviour 4.1.1.2 The selfish herd and group-living 4.1.1.3 Anticipatory defences 4.1.1.4 ‘Genetic’ defences 4.1.2 Post-infection defences 4.1.2.1 Behavioural changes 4.1.2.2 Physiological responses 4.1.3 Social immunity 4.2 Basic elements of the immune defence 4.2.1 Humoral defences 4.2.1.1 Immunoglobulins 4.2.1.2 Complement 4.2.1.3 Other humoral components 4.2.2 Cellular defences 4.2.2.1 Haematopoiesis (cell development) 4.2.2.2 Phagocytosis 4.2.2.3 Melanization, encapsulation 4.2.2.4 Clotting, nodule formation 4.3 Basic defences by the immune system 4.3.1 Inflammation 4.3.2 Innate immunity 4.3.3 Adaptive (acquired) immunity 4.3.4 Regulation of the immune response 4.3.4.1 Regulation by protein–protein interactions 4.3.4.2 Regulation by miRNAs 4.3.4.3 Regulation by post-translational modification 4.3.4.4 Negative regulation 4.4 Immune defence protein families 4.4.1 The major families 4.4.2 Effectors: antimicrobial peptides 4.5 The generation of diversity in recognition 4.5.1 Polymorphism in the germline 4.5.2 Somatic generation of diversity 4.5.2.1 Alternative splicing 4.5.2.1 Alternative splicing 4.5.2.2 Somatic DNA modification 4.5.2.3 Somatic (hyper-)mutation, gene conversion 4.5.3 Variability and Band T-cells 4.5.3.1 B-cells 4.5.3.2 T-cells 4.6 The diversity of immune defences 4.6.1 Defence in plants 4.6.2 Defence in invertebrates 4.6.2.1 Insects 4.6.2.2 Echinoderms 4.6.3 The jawed (higher) vertebrates 4.7 Memory in immune systems 4.7.1 Memory in the adaptive system 4.7.2 Memory in innate systems 4.8 Microbiota 4.8.1 Assembly, structure, and location of the microbiota 4.8.2 Mechanisms of defence by the microbiota 4.9 Evolution of the immune system 4.9.1 Recognition of non-self 4.9.2 The evolution of signal transduction and effectors 4.9.3 The evolution of adaptive immunity Box 4.1 Disease space: defences Box 4.2 Adaptive immunity in prokaryotes: the CRISPR–Cas system Box 4.3 Antiviral defence of invertebrates Box 4.4 Priming and memory Chapter 5: Ecological immunology 5.1 Variation in parasitism 5.1.1 Variation caused by external factors 5.1.2 Variation in immune responses 5.2 Ecological immunology: The costs of defence 5.2.1 General principles 5.2.2 Defence costs related to life history and behaviour 5.2.3 Cost of evolving an immune defence 5.2.3.1 Genetic costs associated with the evolution of immune defences 5.2.3.2 Physiological costs associated with the evolution (maintenance) of immune defences 5.2.4 Cost of using immune defences 5.2.4.1 Genetic costs associated with the deployment of immune defences 5.2.4.1 Genetic costs associated with the deployment of immune defences 5.2.4.2 Physiological costs associated with the deployment of immune defences 5.2.4.3 Costs due to immunopathology 5.3 The nature of defence costs 5.3.1 What is the limiting resource? 5.3.1.1 Energy 5.3.1.2 Food and nutrients 5.3.2 Regulation of allocation 5.4 Measurement and fitness effects of immune defence 5.5 Tolerance as defence element 5.5.1 Defining and measuring tolerance 5.5.2 Mechanisms of tolerance 5.5.3 Selection and evolution of tolerance 5.6 Strategies of immune defence 5.6.1 General considerations 5.6.2 Defence and host life span 5.6.3 Specific vs general defence 5.6.4 Constitutive vs induced defence 5.6.5 Robust defence Box 5.1 Disease space and costs of defence Box 5.2 Measures of host defence Box 5.3 Structurally robust immune defencesexogneousdsRNAviraldsRNAtransposon Chapter 6: Parasites, immunity, and sexual selection 6.1 Differences between the sexes 6.1.1 Differences in susceptibility to parasites 6.1.2 Differences in immune function 6.1.3 The role of sex hormones 6.2 Parasitism and sexual selection 6.2.1 Female mate choice 6.2.2 Males indicate the quality of resisting parasites 6.2.2.1 The Hamilton–Zuk hypothesis 6.2.2.2 The immunocompetence handicap hypothesis 6.2.3 Male genotypes and benefits for resistance 6.2.3.1 Heterozygosity advantage 6.2.3.2 Dissimilar genes Box 6.1 Sexual selection Chapter 7: Specificity 7.1 Parasite specificity and host range 7.1.1 Measuring parasite specificity and host range 7.1.1.1 Observation of infections 7.1.1.2 Screening with genetic tools 7.1.1.3 Experimental infections 7.1.2 Characteristics of a host 7.1.3 Evolution of parasite specificity and host range 7.2 Factors affecting the host range 7.2.1 Biogeographical factors 7.2.1.1 Parasite geographic distribution 7.2.1.2 Spatial heterogeneity 7.2.2 Phylogeny and available time 7.2.2.1 Constraints by host phylogeny 7.2.2.2 Phylogenetic age of groups 7.2.2.3 Constraints by parasite group 7.2.3 Epidemiological processes 7.2.3.1 Transmission opportunities 7.2.3.2 Differences in host predictability 7.2.3.3 Transmission mode 7.2.4 Constraints set by life history 7.2.4.1 Host body size and longevity 7.2.4.2 Complexity of the life cycle 7.2.4.3 Selection regimes within the parasite’s life cycle 7.2.5 Virulence and defence 7.2.5.1 Virulence of the parasite 7.2.5.2 Immune defences and defensive symbionts 7.3 Specific host defences 7.3.1 Specificity beyond the immune system 7.3.1.1 Behavioural defences 7.3.1.2 Other nonimmunological defences 7.3.2 Specificity of immune systems 7.4 Memory, transgenerational protection 7.4.1 Evolution of memory and immune priming 7.4.2 Transgenerational immune priming (TGIP) 7.5 Adaptive diversity and crossreactivity Box 7.1 Specificity in defence space Box 7.2 Host specificity indices Chapter 8: Parasite immune evasion and manipulation of host phenotype 8.1 Parasites manipulate their hosts 8.2 The diversity of immune evasion mechanisms 8.2.1 Passive evasion 8.2.2 Active interference 8.2.3 Functional targets of immune evasion 8.2.3.1 Escape recognition 8.2.3.2 Evasion of early responses 8.2.3.3 Manipulate the signalling network 8.2.3.4 Avoid bein g killed by effectors 8.2.3.5 Manipulation of auxiliary mechanisms 8.2.3.6 Microbiota as a target 8.3 Manipulation of the host phenotype 8.3.1 Extending infection life span (parasite survival) 8.3.1.1 Fecundity reduction 8.3.1.2 Gigantism 8.3.1.3 Changes of the social context 8.3.2 Manipulation of the host phenotype to increase transmission 8.3.2.1 Transmission site 8.3.2.2 Transmission to a next host 8.3.2.3 Transmission by vectors 8.3.3 Change of host morphology 8.3.3.1 Colouration and odour 8.3.3.2 Morphology and feminization 8.3.4 Affecting transmission routes 8.3.5 Affecting social behaviour 8.3.6 Affecting the neuronal system 8.4 Strategies of manipulation 8.4.1 Common tactics 8.4.2 What manipulation effort? 8.4.3 Multiple infections Box 8.1 Immune evasion by Bacillus anthracis Box 8.2 Is manipulation adaptive, and for whom? Box 8.3 Manipulation and evasion in disease space Box 8.4 Manipulation of vertical transmission Chapter 9: Transmission, infection, and pathogenesis 9.1 Transmission 9.1.1 Exit points from the host 9.1.2 Entry points 9.1.3 Horizontal vs vertical transmission 9.1.4 The evolution of transmission 9.2 Variation in infection outcome 9.3 Infection 9.3.1 Infective dose 9.3.2 Generalized models of infection 9.3.2.1 Independent action hypothesis (IAH) 9.3.2.2 Individual effective dose (threshold models) 9.3.2.3 Host heterogeneity models (HHS) 9.3.2.4 Withininoculum interaction models 9.3.2.5 Sequential models 9.3.3 Processbased models 9.3.3.1 The lottery model 9.3.3.2 The manipulation hypothesis 9.3.3.3 Early infection dynamics 9.4 Pathogenesis: The mechanisms of virulence 9.4.1 Impairing host capacities 9.4.2 Destruction of tissue 9.4.3 Virulence factors 9.4.3.1 Adhesion factors (adhesins) 9.4.3.2 Colonization factors 9.4.3.3 Invasion factors (Invasins) 9.4.3.4 Immune evasion factors 9.4.4 Toxins 9.4.5 Proteases 9.4.6 Pathogenesis via the microbiota 9.4.7 Pathogenesis by coinfections 9.5 Immunopathology 9.5.1 Immunopathology associated with cytokines 9.5.2 Immunopathology caused by immune evasion mechanisms Box 9.1 Infection in disease space Box 9.2 Definitions of dose Box 9.3 Quantitative Microbial Risk Assessment (QMRA) Box 9.4 Formalizing infectious dose in general models Chapter 10: Host–parasite genetics 10.1 Genetics and genomics of host–parasite interactions 10.1.1 The importance of genetics 10.1.2 Genomics and host–parasite genetics 10.1.2.1 Diagnostics 10.1.2.2 Reading the genome 10.1.2.3 Association with a phenotype 10.1.2.4 Changing the genotype 10.2 Genetics of host defence 10.3 Parasite genetics 10.3.1 Viral genetics 10.3.2 Genetics of pathogenic bacteria 10.3.2.1 Pathogenicity islands 10.3.2.2 PICIs and genetransfer agents 10.4 Genetic variation 10.4.1 Individual genetic polymorphism 10.4.2 Genetic variation in populations 10.4.3 Gene expression 10.4.3.1 Expression profile and transcriptome 10.4.3.2 Copy number variation 10.4.3.3 Phase variation and antigenic variation 10.4.4 Heritability of host and pathogen traits 10.5 Host–parasite genetic interactions 10.5.1 Epistasis 10.5.2 Models of genotypic interactions 10.5.2.1 Geneforgene interaction (GFG) 10.5.2.2 Matching specificities (matching alleles) 10.5.3 Role of the microbiota 10.6 Signatures of selection 10.6.1 Selection by parasites in animal populations 10.6.2 Selection by parasites in human populations 10.6.3 Signatures of selection in parasites 10.7 Parasite population genetic structure 10.7.1 Determinants of structure 10.7.2 Genetic exchange in parasites Box 10.1 Host–parasite interaction in disease space Box 10.2 Sequencing technologies Box 10.3 Quantitative genetic effects Box 10.4 Cross- infection experiments Box 10.5 Genetic interaction models Box 10.6 Signatures of selection Chapter 11: Betweenhost dynamics (Epidemiology) 11.1 Epidemiology of infectious diseases 11.2 Modelling infectious diseases 11.2.1 The SIR model 11.2.2 Thresholds and vaccination 11.2.3 Stochastic epidemiology 11.2.4 Network analysis of epidemics 11.2.5 Spatial heterogeneity 11.2.6 The epidemic as an invasion process 11.3 Endemic diseases and periodic outbreaks 11.4 Epidemiology of vectored diseases 11.5 Epidemiology of macroparasites 11.5.1 Distribution of macroparasites among hosts 11.5.2 Epidemiological dynamics of macroparasites 11.6 Population dynamics of host–parasitoid systems 11.7 Molecular epidemiology 11.8 Immunoepidemiology 11.8.1 Effects of immunity on disease dynamics 11.8.2 Inferences from disease dynamics 11.8.3 Immunological markers in epidemiology Box 11.1 Bernoulli’s theory of smallpox Box 11.2 The basic epidemiological model (SIR) Box 11.3 Calculating R0 Box 11.4 Epidemics and disease space Box 11.5 Epidemiology of macroparasites Box 11.6 Phylodynamics Box 11.7 Coronavirus outbreaks Chapter 12: Withinhost dynamics and evolution 12.1 Primary phase of infection 12.2 Withinhost dynamics and evolution of parasites 12.2.1 Target celllimited models 12.2.2 Dynamics in disease space 12.2.3 Strategies of withinhost growth 12.2.4 Modelling immune responses 12.2.4.1 Computational immunology 12.2.4.2 Systems immunology 12.3 Withinhost evolution 12.3.1 Evolutionary processes in infecting populations 12.3.1.1 Processes of diversification 12.3.1.2 Evolution of bacteria 12.3.1.3 Evolution of viruses 12.3.2 Antigenic variation 12.3.3 Antibiotic resistance 12.3.4 Evolutionary perspectives of antibiotic resistance 12.4 Multiple infections 12.4.1 Competition within the host 12.4.2 Cooperation within hosts 12.5 Microbiota within the host 12.6 Withinvs betweenhost episodes Box 12.1 Signalling theory and infection Box 12.2 Target cell- limited models Box 12.3 Predictions for infections from disease space Box 12.4 Mechanisms of antibiotic resistance in bacteria Box 12.5 Quorum sensing in bacteria Chapter 13: Virulence evolution 13.1 The meaning of virulence 13.2 Virulence as a nonor maladaptive phenomenon 13.2.1 Virulence as a side effect 13.2.2 Shortsighted evolution 13.2.3 Virulence as a negligible effect for the parasite 13.2.4 Avirulence theory 13.3 Virulence as an evolved trait 13.4 The standard evolutionary theory of virulence 13.4.1 The basic principle 13.4.2 The recovery–virulence tradeoff 13.4.3 The transmission–virulence tradeoff 13.5 The ecology of virulence 13.5.1 Transmission mode 13.5.2 Host population dynamics 13.6 Host population structure 13.6.1 Spatial structure 13.6.2 Variation in host types 13.6.3 Social structure 13.7 Nonequilibrium virulence: Invasion and epidemics 13.8 Withinhost evolution and virulence 13.8.1 Withinhost replication and clearance of infection 13.8.2 Withinhost evolution: Serial passage 13.8.3 Withinhost evolution and virulence in a population 13.9 Multiple infections and parasite interactions 13.9.1 Virulence and competition among parasites 13.9.1.1 Resource competition 13.9.1.2 Apparent competition 13.9.1.3 Interference competition 13.9.2 Cooperation among coinfecting parasites 13.9.2.1 Kinship among parasites 13.9.2.2 Cooperative action 13.10 Additional processes 13.10.1 Medical intervention and virulence 13.10.2 Castration and obligate killers 13.11 Virulence and life history of infection 13.11.1 The timing of benefits and costs 13.11.2 Sensitivity of parasite fitness Box 13.1 Virulence in disease space Box 13.2 Extensions to the standard theory Box 13.3 Virulence evolution with immunopathology Box 13.4 Serial passage Box 13.5 Kin selection and virulence Chapter 14: Host–parasite coevolution 14.1 Macroevolution 14.1.1 The adapted microbiota 14.1.2 Cospeciation 14.1.3 Host switching 14.2 Microevolution 14.2.1 Coevolutionary scenarios 14.2.1.1 Selective sweeps 14.2.1.2 Arms races 14.2.1.3 Antagonistic, timelagged fluctuations (Red Queen) 14.2.1.4 ‘Evolutionproof’ strategies 14.2.2 Parasites and maintenance of host diversity 14.2.2.1 Host–parasite asymmetry 14.2.2.2 Red Queen and host diversity 14.2.2.3 Transspecies polymorphism 14.3 Parasites, recombination, and sex 14.3.1 Theoretical issues 14.3.2 Empirical studies 14.4 Local adaptation Box 14.1 Co- evolution and disease space Box 14.2 History of the Red Queen hypothesis Box 14.3 The masterpiece of nature: Sex and recombination Chapter 15: Ecology 15.1 Host ecology and life history 15.1.1 Host body size 15.1.2 Host reproductive patterns 15.1.3 Host group living and sociality 15.1.4 Regulation of host populations by parasites 15.1.5 Host population decline and extinction 15.2 Host ecological communities 15.2.1 Parasite effects on host competition 15.2.2 Communities of hosts 15.2.3 Food webs 15.2.4 Dilution effect 15.2.5 The value of parasites for hosts 15.3 Parasite ecology 15.3.1 Geographical patterns 15.3.1.1 Relation to area size 15.3.1.2 Latitudinal gradients 15.3.2 Parasite community richness and diversity 15.4 Migration and invasion 15.4.1 Host migration 15.4.2 Host invasion 15.4.2.1 Enemy release (parasite loss) 15.4.2.2 Parasite spillover 15.4.2.3 Parasite spillback 15.4.2.4 Facilitation 15.5 Zoonoses and disease emergence 15.5.1 Reservoirs 15.5.2 Emergence 15.5.3 Zoonotic human diseases 15.6 Climate change and parasitism Box 15.1 Basic population ecology Box 15.2 The African rinderpest epidemic Box 15.3 Spill- over and disease space Bibliography Subject index Taxonomic index