دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Dan Simon
سری:
ISBN (شابک) : 9781118659502, 1118659503
ناشر: Wiley Blackwell
سال نشر: 2013
تعداد صفحات: [776]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب Evolutionary optimization algorithms. Biologically-Inspired and Population-Based Approaches to Computer Intelligence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های بهینه سازی تکاملی رویکردهای الهام گرفته از زیستشناسی و مبتنی بر جمعیت به هوش رایانهای نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک رویکرد روشن و شفاف از پایین به بالا به اصول اساسی الگوریتم های تکاملی الگوریتم های تکاملی (EAs) نوعی هوش مصنوعی هستند. انگیزه EAها فرآیندهای بهینهسازی است که در طبیعت مشاهده میکنیم، مانند انتخاب طبیعی، مهاجرت گونهها، ازدحام پرندگان، فرهنگ انسانی و کلنیهای مورچهها. این کتاب در مورد نظریه، تاریخ، ریاضیات و برنامه ریزی الگوریتم های بهینه سازی تکاملی بحث می کند. الگوریتمهای ویژگی شامل الگوریتمهای ژنتیک، برنامهریزی ژنتیک، بهینهسازی آنتکلونی، بهینهسازی ازدحام ذرات، تکامل متفاوت، بهینهسازی مبتنی بر جغرافیای زیستی و بسیاری دیگر میشوند. الگوریتمهای بهینهسازی تکاملی: یک رویکرد ساده و از پایین به بالا ارائه میکند که به خواننده کمک میکند تا درک واضح - اما از لحاظ نظری دقیقی از الگوریتمهای تکاملی به دست آورد، با تاکید بر پیادهسازی. جستجوی غذا، و بسیاری دیگر - و شباهت ها و تفاوت های آنها را با EAهای معتبرتر مورد بحث قرار می دهد، شامل مسائل پایان فصل به علاوه یک کتابچه راهنمای راه حل در دسترس آنلاین برای مربیان، مثال های ساده ای را ارائه می دهد که درک بصری نظریه را در اختیار خواننده قرار می دهد. کد منبع ویژگی ها برای مثال های موجود در وبسایت نویسنده، تکنیکهای ریاضی پیشرفتهای را برای تجزیه و تحلیل EA ارائه میدهد، از جمله مدلسازی مارکوف و مدلسازی سیستم پویا. دانش آموزان و متخصصان درگیر در مهندسی و علوم کامپیوتر.
A clear and lucid bottom-up approach to the basic principlesof evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificialintelligence. EAs are motivated by optimization processes that weobserve in nature, such as natural selection, species migration,bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, andprogramming of evolutionary optimization algorithms. Featuredalgorithms include genetic algorithms, genetic programming, antcolony optimization, particle swarm optimization, differentialevolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists thereader in obtaining a clear—but theoreticallyrigorous—understanding of evolutionary algorithms, with anemphasis on implementation Gives a careful treatment of recently developedEAs—including opposition-based learning, artificial fishswarms, bacterial foraging, and many others— and discussestheir similarities and differences from more well-establishedEAs Includes chapter-end problems plus a solutions manual availableonline for instructors Offers simple examples that provide the reader with anintuitive understanding of the theory Features source code for the examples available on the author'swebsite Provides advanced mathematical techniques for analyzing EAs,including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspiredand Population-Based Approaches to Computer Intelligence is anideal text for advanced undergraduate students, graduate students,and professionals involved in engineering and computer science.
Cover Title Page Copyright Page SHORT TABLE OF CONTENTS DETAILED TABLE OF CONTENTS Acknowledgments Acronyms List of Algorithms PART I INTRODUCTION TO EVOLUTIONARY OPTIMIZATION 1 Introduction 1.1 Terminology 1.2 Why Another Book on Evolutionary Algorithms? 1.3 Prerequisites 1.4 Homework Problems 1.5 Notation 1.6 Outline of the Book 1.7 A Course Based on This Book 2 Optimization 2.1 Unconstrained Optimization 2.2 Constrained Optimization 2.3 Multi-Objective Optimization 2.4 Multimodal Optimization 2.5 Combinatorial Optimization 2.6 Hill Climbing 2.6.1 Biased Optimization Algorithms 2.6.2 The Importance of Monte Carlo Simulations 2.7 Intelligence 2.7.1 Adaptation 2.7.2 Randomness 2.7.3 Communication 2.7.4 Feedback 2.7.5 Exploration and Exploitation 2.8 Conclusion Problems PART II CLASSIC EVOLUTIONARY ALGORITHMS 3 Genetic Algorithms 3.1 The History of Genetics 3.1.1 Charles Darwin 3.1.2 Gregor Mendel 3.2 The Science of Genetics 3.3 The History of Genetic Algorithms 3.4 A Simple Binary Genetic Algorithm 3.4.1 A Genetic Algorithm for Robot Design 3.4.2 Selection and Crossover 3.4.3 Mutation 3.4.4 GA Summary 3.4.5 GA Tuning Parameters and Examples 3.5 A Simple Continuous Genetic Algorithm 3.6 Conclusion Problems 4 Mathematical Models of Genetic Algorithms 4.1 Schema Theory 4.2 Markov Chains 4.3 Markov Model Notation for Evolutionary Algorithms 4.4 Markov Models of Genetic Algorithms 4.4.1 Selection 4.4.2 Mutation 4.4.3 Crossover 4.5 Dynamic System Models of Genetic Algorithms 4.5.1 Selection 4.5.2 Mutation 4.5.3 Crossover 4.6 Conclusion Problems 5 Evolutionary Programming 5.1 Continuous Evolutionary Programming 5.2 Finite State Machine Optimization 5.3 Discrete Evolutionary Programming 5.4 The Prisoner's Dilemma 5.5 The Artificial Ant Problem 5.6 Conclusion Problems 6 Evolution Strategies 6.1 The (1+1) Evolution Strategy 6.2 The 1/5 Rule: A Derivation 6.3 The (μ+l) Evolution Strategy 6.4 (μ + λ) and (μ, λ) Evolution Strategies 6.5 Self-Adaptive Evolution Strategies 6.6 Conclusion Problems 7 Genetic Programming 7.1 Lisp: The Language of Genetic Programming 7.2 The Fundamentals of Genetic Programming 7.2.1 Fitness Measure 7.2.2 Termination Criteria 7.2.3 Terminal Set 7.2.4 Function Set 7.2.5 Initialization 7.2.6 Genetic Programming Parameters 7.3 Genetic Programming for Minimum Time Control 7.4 Genetic Programming Bloat 7.5 Evolving Entities other than Computer Programs 7.6 Mathematical Analysis of Genetic Programming 7.6.1 Definitions and Notation 7.6.2 Selection and Crossover 7.6.3 Mutation and Final Results 7.7 Conclusion Problems 8 Evolutionary Algorithm Variations 8.1 Initialization 8.2 Convergence Criteria 8.3 Problem Representation Using Gray Coding 8.4 Elitism 8.5 Steady-State and Generational Algorithms 8.6 Population Diversity 8.6.1 Duplicate Individuals 8.6.2 Niche-Based and Species-Based Recombination 8.6.3 Niching 8.7 Selection Options 8.7.1 Stochastic Universal Sampling 8.7.2 Over-Selection 8.7.3 Sigma Scaling 8.7.4 Rank-Based Selection 8.7.5 Linear Ranking 8.7.6 Tournament Selection 8.7.7 Stud Evolutionary Algorithms 8.8 Recombination 8.8.1 Single-Point Crossover (Binary or Continuous EAs) 8.8.2 Multiple-Point Crossover (Binary or Continuous EAs) 8.8.3 Segmented Crossover (Binary or Continuous EAs) 8.8.4 Uniform Crossover (Binary or Continuous EAs) 8.8.5 Multi-Parent Crossover (Binary or Continuous EAs) 8.8.6 Global Uniform Crossover (Binary or Continuous EAs) 8.8.7 Shuffle Crossover (Binary or Continuous EAs) 8.8.8 Flat Crossover and Arithmetic Crossover (Continuous EAs) 8.8.9 Blended Crossover (Continuous EAs) 8.8.10 Linear Crossover (Continuous EAs) 8.8.11 Simulated Binary Crossover (Continuous EAs) 8.8.12 Summary 8.9 Mutation 8.9.1 Uniform Mutation Centered at xi(k) 8.9.2 Uniform Mutation Centered at the Middle of the Search Domain 8.9.3 Gaussian Mutation Centered at xi(k) 8.9.4 Gaussian Mutation Centered at the Middle of the Search Domain 8.10 Conclusion Problems PART III MORE RECENT EVOLUTIONARY ALGORITHMS 9 Simulated Annealing 9.1 Annealing in Nature 9.2 A Simple Simulated Annealing Algorithm 9.3 Cooling Schedules 9.3.1 Linear Cooling 9.3.2 Exponential Cooling 9.3.3 Inverse Cooling 9.3.4 Logarithmic Cooling 9.3.5 Inverse Linear Cooling 9.3.6 Dimension-Dependent Cooling 9.4 Implementation Issues 9.4.1 Candidate Solution Generation 9.4.2 Reinitialization 9.4.3 Keeping Track of the Best Candidate Solution 9.5 Conclusion Problems 10 Ant Colony Optimization 10.1 Pheromone Models 10.2 Ant System 10.3 Continuous Optimization 10.4 Other Ant Systems 10.4.1 Max-Min Ant System 10.4.2 Ant Colony System 10.4.3 Even More Ant Systems 10.5 Theoretical Results 10.6 Conclusion Problems 11 Particle Swarm Optimization 11.1 A Basic Particle Swarm Optimization Algorithm 11.2 Velocity Limiting 11.3 Inertia Weighting and Constriction Coefficients 11.3.1 Inertia Weighting 11.3.2 The Constriction Coefficient 11.3.3 PSO Stability 11.4 Global Velocity Updates 11.5 The Fully Informed Particle Swarm 11.6 Learning from Mistakes 11.7 Conclusion Problems 12 Differential Evolution 12.1 A Basic Differential Evolution Algorithm 12.2 Differential Evolution Variations 12.2.1 Trial Vectors 12.2.2 Mutant Vectors 12.2.3 Scale Factor Adjustment 12.3 Discrete Optimization 12.3.1 Mixed-Integer Differential Evolution 12.3.2 Discrete Differential Evolution 12.4 Differential Evolution and Genetic Algorithms 12.5 Conclusion Problems 13 Estimation of Distribution Algorithms 13.1 Estimation of Distribution Algorithms: Basic Concepts 13.1.1 A Simple Estimation of Distribution Algorithm 13.1.2 Computations of Statistics 13.2 First-Order Estimation of Distribution Algorithms 13.2.1 The Univariate Marginal Distribution Algorithm (UMDA) 13.2.2 The Compact Genetic Algorithm (cGA) 13.2.3 Population Based Incremental Learning (PBIL) 13.3 Second-Order Estimation of Distribution Algorithms 13.3.1 Mutual Information Maximization for Input Clustering (MIMIC) 13.3.2 Combining Optimizers with Mutual Information Trees (COMIT) 13.3.3 The Bivariate Marginal Distribution Algorithm (BMDA) 13.4 Multivariate Estimation of Distribution Algorithms 13.4.1 The Extended Compact Genetic Algorithm (ECGA) 13.4.2 Other Multivariate Estimation of Distribution Algorithms 13.5 Continuous Estimation of Distribution Algorithms 13.5.1 The Continuous Univariate Marginal Distribution Algorithm 13.5.2 Continuous Population Based Incremental Learning 13.6 Conclusion Problems 14 Biogeography-Based Optimization 14.1 Biogeography 14.2 Biogeography is an Optimization Process 14.3 Biogeography-Based Optimization 14.4 BBO Extensions 14.4.1 Migration Curves 14.4.2 Blended Migration 14.4.3 Other Approaches to BBO 14.4.4 BBO and Genetic Algorithms 14.5 Conclusion Problems 15 Cultural Algorithms 15.1 Cooperation and Competition 15.2 Belief Spaces in Cultural Algorithms 15.3 Cultural Evolutionary Programming 15.4 The Adaptive Culture Model 15.5 Conclusion Problems 16 Opposition-Based Learning 16.1 Opposition Definitions and Concepts 16.1.1 Reflected Opposites and Modulo Opposites 16.1.2 Partial Opposites 16.1.3 Type 1 Opposites and Type 2 Opposites 16.1.4 Quasi Opposites and Super Opposites 16.2 Opposition-Based Evolutionary Algorithms 16.3 Opposition Probabilities 16.4 Jumping Ratio 16.5 Oppositional Combinatorial Optimization 16.6 Dual Learning 16.7 Conclusion Problems 17 Other Evolutionary Algorithms 17.1 Tabu Search 17.2 Artificial Fish Swarm Algorithm 17.2.1 Random Behavior 17.2.2 Chasing Behavior 17.2.3 Swarming Behavior 17.2.4 Searching Behavior 17.2.5 Leaping Behavior 17.2.6 A Summary of the Artificial Fish Swarm Algorithm 17.3 Group Search Optimizer 17.4 Shuffled Frog Leaping Algorithm 17.5 The Firefly Algorithm 17.6 Bacterial Foraging Optimization 17.7 Artificial Bee Colony Algorithm 17.8 Gravitational Search Algorithm 17.9 Harmony Search 17.10 Teaching-Learning-Based Optimization 17.11 Conclusion Problems PART IV SPECIAL TYPES OF OPTIMIZATION PROBLEMS 18 Combinatorial Optimization 18.1 The Traveling Salesman Problem 18.2 TSP Initialization 18.2.1 Nearest-Neighbor Initialization 18.2.2 Shortest-Edge Initialization 18.2.3 Insertion Initialization 18.2.4 Stochastic Initialization 18.3 TSP Representations and Crossover 18.3.1 Path Representation 18.3.2 Adjacency Representation 18.3.3 Ordinal Representation 18.3.4 Matrix Representation 18.4 TSP Mutation 18.4.1 Inversion 18.4.2 Insertion 18.4.3 Displacement 18.4.4 Reciprocal Exchange 18.5 An Evolutionary Algorithm for the Traveling Salesman Problem 18.6 The Graph Coloring Problem 18.7 Conclusion Problems 19 Constrained Optimization 19.1 Penalty Function Approaches 19.1.1 Interior Point Methods 19.1.2 Exterior Methods 19.2 Popular Constraint-Handling Methods 19.2.1 Static Penalty Methods 19.2.2 Superiority of Feasible Points 19.2.3 The Eclectic Evolutionary Algorithm 19.2.4 Co-evolutionary Penalties 19.2.5 Dynamic Penalty Methods 19.2.6 Adaptive Penalty Methods 19.2.7 Segregated Genetic Algorithm 19.2.8 Self-Adaptive Fitness Formulation 19.2.9 Self-Adaptive Penalty Function 19.2.10 Adaptive Segregational Constraint Handling 19.2.11 Behavioral Memory 19.2.12 Stochastic Ranking 19.2.13 The Niched-Penalty Approach 19.3 Special Representations and Special Operators 19.3.1 Special Representations 19.3.2 Special Operators 19.3.3 Genocop 19.3.4 Genocop II 19.3.5 Genocop III 19.4 Other Approaches to Constrained Optimization 19.4.1 Cultural Algorithms 19.4.2 Multi-Objective Optimization 19.5 Ranking Candidate Solutions 19.5.1 Maximum Constraint Violation Ranking 19.5.2 Constraint Order Ranking 19.5.3 ε-Level Comparisons 19.6 A Comparison Between Constraint-Handling Methods 19.7 Conclusion Problems 20 Multi-Objective Optimization 20.1 Pareto Optimality 20.2 The Goals of Multi-Objective Optimization 20.2.1 Hypervolume 20.2.2 Relative Coverage 20.3 Non-Pareto-Based Evolutionary Algorithms 20.3.1 Aggregation Methods 20.3.2 The Vector Evaluated Genetic Algorithm (VEGA) 20.3.3 Lexicographic Ordering 20.3.4 The ε-Constraint Method 20.3.5 Gender-Based Approaches 20.4 Pareto-Based Evolutionary Algorithms 20.4.1 Evolutionary Multi-Objective Optimizers 20.4.2 The ε-Based Multi-Objective Evolutionary Algorithm (e-MOEA) 20.4.3 The Nondominated Sorting Genetic Algorithm (NSGA) 20.4.4 The Multi-Objective Genetic Algorithm (MOGA) 20.4.5 The Niched Pareto Genetic Algorithm (NPGA) 20.4.6 The Strength Pareto Evolutionary Algorithm (SPEA) 20.4.7 The Pareto Archived Evolution Strategy (PAES) 20.5 Multi-Objective Biogeography-Based Optimization 20.5.1 Vector Evaluated BBO 20.5.2 Nondominated Sorting BBO 20.5.3 Niched Pareto BBO 20.5.4 Strength Pareto BBO 20.5.5 Multi-Objective BBO Simulations 20.6 Conclusion Problems 21 Expensive, Noisy, and Dynamic Fitness Functions 21.1 Expensive Fitness Functions 21.1.1 Fitness Function Approximation 21.1.2 Approximating Transformed Functions 21.1.3 How to Use Fitness Approximations in Evolutionary Algorithms 21.1.4 Multiple Models 21.1.5 Overfitting 21.1.6 Evaluating Approximation Methods 21.2 Dynamic Fitness Functions 21.2.1 The Predictive Evolutionary Algorithm 21.2.2 Immigrant Schemes 21.2.3 Memory-Based Approaches 21.2.4 Evaluating Dynamic Optimization Performance 21.3 Noisy Fitness Functions 21.3.1 Resampling 21.3.2 Fitness Estimation 21.3.3 The Kaiman Evolutionary Algorithm 21.4 Conclusion Problems PART V APPENDICES Appendix A: Some Practical Advice A.1 Check for Bugs A.2 Evolutionary Algorithms are Stochastic A.3 Small Changes can have Big Effects A.4 Big changes can have Small Effects A.5 Populations Have Lots of Information A.6 Encourage Diversity A.7 Use Problem-Specific Information A.8 Save your Results Often A.9 Understand Statistical Significance A.10 Write Well A.11 Emphasize Theory A.12 Emphasize Practice Appendix B: The No Free Lunch Theorem and Performance Testing B.1 The No Free Lunch Theorem B.2 Performance Testing B.2.1 Overstatements Based on Simulation Results B.2.2 How to Report (and How Not to Report) Simulation Results B.2.3 Random Numbers B.2.4 T-Tests B.2.5 F-Tests B.3 Conclusion Appendix C: Benchmark Optimization Functions C.1 Unconstrained Benchmarks C.1.1 The Sphere Function C.1.2 The Ackley Function C.1.3 The Ackley Test Function C.1.4 The Rosenbrock Function C.1.5 The Fletcher Function C.1.6 The Griewank Function C.1.7 The Penalty #1 Function C.1.8 The Penalty #2 Function C.1.9 The Quartic Function C.1.10 The Tenth Power Function C.1.11 The Rastrigin Function C.1.12 The Schwefel Double Sum Function C.1.13 The Schwefel Max Function C.1.14 The Schwefel Absolute Function C.1.15 The Schwefel Sine Function C.1.16 The Step Function C.1.17 The Absolute Function C.1.18 Shekel's Foxhole Function C.1.19 The Michalewicz Function C.1.20 The Sine Envelope Function C.1.21 The Eggholder Function C.1.22 The Weierstrass Function C.2 Constrained Benchmarks C.2.1 The C01 Function C.2.2 The C02 Function C.2.3 The C03 Function C.2.4 The C04 Function C.2.5 The C05 Function C.2.6 The C06 Function C.2.7 The C07 Function C.2.8 The C08 Function C.2.9 The C09 Function C.2.10 The C10 Function C.2.11 The Cll Function C.2.12 The C12 Function C.2.13 The C13 Function C.2.14 The C14 Function C.2.15 The C15 Function C.2.16 The C16 Function C.2.17 The C17 Function C.2.18 The C18 Function C.2.19 Summary of Constrained Benchmarks C.3 Multi-Objective Benchmarks C.3.1 Unconstrained Multi-Objective Optimization Problem 1 C.3.2 Unconstrained Multi-Objective Optimization Problem 2 C.3.3 Unconstrained Multi-Objective Optimization Problem 3 C.3.4 Unconstrained Multi-Objective Optimization Problem 4 C.3.5 Unconstrained Multi-Objective Optimization Problem 5 C.3.6 Unconstrained Multi-Objective Optimization Problem 6 C.3.7 Unconstrained Multi-Objective Optimization Problem 7 C.3.8 Unconstrained Multi-Objective Optimization Problem 8 C.3.9 Unconstrained Multi-Objective Optimization Problem 9 C.3.10 Unconstrained Multi-Objective Optimization Problem 10 C.4 Dynamic Benchmarks C.4.1 The Complete Dynamic Benchmark Description C.4.2 A Simplified Dynamic Benchmark Description C.5 Noisy Benchmarks C.6 Traveling Salesman Problems C.7 Unbiasing the Search Space C.7.1 Offsets C.7.2 Rotation Matrices References Topic Index