دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Leslie Pérez Cáceres. Thomas Stützle
سری: Lecture Notes in Computer Science, 13987
ISBN (شابک) : 3031300343, 9783031300349
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 257
[258]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Evolutionary Computation in Combinatorial Optimization: 23rd European Conference, EvoCOP 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات تکاملی در بهینه سازی ترکیبی: بیست و سومین کنفرانس اروپایی، EvoCOP 2023 به عنوان بخشی از EvoStar 2023 برنو، جمهوری چک، 12 تا 14 آوریل، 2023 مجموعه مقالات برگزار شد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات داوری بیست و سومین کنفرانس اروپایی محاسبات تکاملی در بهینهسازی ترکیبی، EvoCOP 2023، که به عنوان بخشی از Evo*2023، در برنو، جمهوری چک در آوریل 2023 برگزار شد، با رویدادهای Evo*2023 برگزار شد: EvoMUSART، EvoApplications و EuroGP. 15 مقاله کامل اصلاح شده ارائه شده در این کتاب با دقت بررسی و از بین 32 مقاله ارسالی انتخاب شدند. آنها پیشرفت های نظری و تجربی اخیر را در بهینه سازی ترکیبی، الگوریتم های تکاملی و زمینه های تحقیقاتی مرتبط ارائه می دهند.
This book constitutes the refereed proceedings of the 23rd European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP 2023, held as part of Evo*2023, in Brno, Czech Republic in April 2023, co-located with the Evo*2023 events: EvoMUSART, EvoApplications, and EuroGP. The 15 revised full papers presented in this book were carefully reviewed and selected from 32 submissions. They present recent theoretical and experimental advances in combinatorial optimization, evolutionary algorithms, and related research fields.
Preface Organization Contents Fairer Comparisons for Travelling Salesman Problem Solutions Using Hash Functions 1 Introduction 2 Collision Analysis of the Fitness Function on the TSP 2.1 Too Many Collisions for the Fitness Function 2.2 Distribution of Collisions over Fitness Values 3 Hash Functions for a Reliable Comparison 3.1 Existing Hash Functions 3.2 The Proposed Function 3.3 Comparative Study 4 Revisiting Some Metaheuristics with Hash Functions 4.1 Cycling Analysis 4.2 Convergence Speed 4.3 Applying Hash Function on Metaheuristics 5 Discussion and Conclusion References Application of Adapt-CMSA to the Two-Echelon Electric Vehicle Routing Problem with Simultaneous Pickup and Deliveries 1 Introduction 2 Problem Description 3 Adapt-CMSA for the 2E-EVRP-SPD 4 Experimental Evaluation 5 Conclusion and Outlook References Real-World Vehicle Routing Using Adaptive Large Neighborhood Search 1 Introduction 2 Mathematical Model 3 Our Approach 3.1 Two-Stage Minimization 3.2 Insertion Optimization 3.3 Removal Optimization 4 Experimental Evaluation 4.1 Li and Lim Benchmark Instances 4.2 Real-World Instances 5 Conclusion References A Multilevel Optimization Approach for Large Scale Battery Exchange Station Location Planning 1 Introduction 2 Related Work 3 The Multi-period Battery Swapping Station Location Problem 4 Multilevel Refinement Algorithm 5 Computational Results 6 Conclusion and Future Work References A Memetic Algorithm for Deinterleaving Pulse Trains 1 Introduction 2 Deinterleaving Markov Processes: Formal Background 2.1 Interleaved Markov Generative Process 2.2 Penalized Maximum Likelihood Score 3 Problem Settings and Motivation for this Work 3.1 Decomposable Score for Estimating Processes Optimal Order 3.2 A Combinatorial Problem in the Space of Partitions 4 A Memetic Algorithm for Alphabet Partitioning 4.1 General Framework 4.2 Initialisation 4.3 Tabu Search Procedure 4.4 Greedy Likelihood-Based Crossover Operator 5 Experiments and Computational Results 5.1 Experimental Condition and Reference Algorithm 5.2 Experiments on Synthetic Datasets 5.3 Experiments on Electronic Warfare Datasets 6 Conclusions References Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem 1 Introduction 1.1 Organization of the Paper 2 Far from Most String Problem 2.1 Integer Linear Programming Model 2.2 Computational Complexity and Previous Work 3 The Proposed Algorithm 3.1 Construction of a Solution 3.2 Solving Sub-instances 3.3 Update of the Pheromone Values 4 Different Objective Functions 5 Experimental Evaluation 5.1 Benchmark Sets 5.2 Algorithm Tuning 5.3 Results 6 Conclusions and Outlook References Monte Carlo Tree Search with Adaptive Simulation: A Case Study on Weighted Vertex Coloring 1 Introduction 2 Related Works on the WVCP 2.1 Local Search Algorithms 2.2 Constructive Heuristics 3 MCTS with Adaptive Simulation Strategy 3.1 Main Scheme 3.2 Adaptive Simulation Strategy Framework 4 Operator Selectors 4.1 Neural Network Selector 4.2 Classic Fitness-Based Selectors 5 Experimentation 5.1 Experimental Settings and Benchmark Instances 5.2 Adaptive Operator Selection During the Search 5.3 Performance Comparisons on the Different Benchmark Instances 6 Conclusions References Evolutionary Strategies for the Design of Binary Linear Codes 1 Introduction 2 Background 2.1 Binary Linear Codes 2.2 Boolean Functions 3 Related Works 4 Evolutionary Strategy Algorithm 4.1 Solutions Encoding and Search Space 4.2 Fitness Function 4.3 Rank-Preserving Mutation and Crossover 5 Experiments 5.1 Experimental Setting 5.2 Results 5.3 Solutions Diversity 6 Conclusions and Future Work References A Policy-Based Learning Beam Search for Combinatorial Optimization 1 Introduction 2 Related Work 3 Policy-Based Learning Beam Search 3.1 Loss Functions 3.2 Bootstrapping 4 Neural Network Architecture 5 Case Study: Longest Common Subsequence Problem 6 Experimental Evaluation 7 Conclusions and Future Work References Cooperative Coevolutionary Genetic Programming Hyper-Heuristic for Budget Constrained Dynamic Multi-workflow Scheduling in Cloud Computing 1 Introduction 2 Background and Related Work 2.1 Background 2.2 Related Work 3 Problem Model 4 Methodology 4.1 Budget Constrained Cooperative Coevolution Genetic Programming Hyper-Heuristic 5 Experiments 5.1 Experiment Design 5.2 Experiment Results 5.3 Analysis 6 Conclusions References OneMax Is Not the Easiest Function for Fitness Improvements 1 Introduction 1.1 Our Result 2 Preliminaries and Definitions 2.1 The Algorithm: SA-(1, )-EA 2.2 The Benchmarks: OneMax and Dynamic BinVal 2.3 Tools 3 Main Proof 3.1 Sketch of Proof 3.2 Proof Details 4 Simulations 5 Conclusion References The Cost of Randomness in Evolutionary Algorithms: Crossover can Save Random Bits 1 Introduction 1.1 Our Contributions 1.2 Related Work 2 Preliminaries and Analysis Tools 3 Cost of Randomness in Mutation-Based EAs 4 Cost of Randomness with Crossover 5 Detailed Analysis for the (2+1) GA 6 Conclusions and Future Work References Multi-objectivization Relaxes Multi-funnel Structures in Single-objective NK-landscapes 1 Introduction 2 Single-objective Landscape 2.1 Single-objective Optimization 2.2 Basin of Attraction 2.3 Local Optima Networks 2.4 Funnel 3 Multi-objective Landscape 3.1 Multi-objective Optimization 3.2 Pareto Local Optimal Solutions Networks 4 NK- And MNK-landscape Problems 4.1 NK-landscape Problem 4.2 MNK-landscape Problem 5 Proposed Method: Multi-Objectivized Local Search 5.1 Motivation 5.2 Algorithm 6 Experimental Setup 6.1 Landscape Analysis 6.2 Algorithm Benchmarks 7 Experimental Results and Discussions 7.1 Landscape Analysis 7.2 Algorithm Benchmarks 8 Conclusions References Decision/Objective Space Trajectory Networks for Multi-objective Combinatorial Optimisation 1 Introduction 2 Multi-objective Combinatorial Optimisation 2.1 Definitions 2.2 Multi-objective Evolutionary Algorithms 3 Search Trajectory Networks 3.1 Definitions 3.2 Network Metrics 3.3 Network Visualisation 4 Experimental Setup 4.1 Benchmark Problems 4.2 Parameter Setting 4.3 Reproducibility 5 Results 5.1 Small Instances 5.2 Large Instances 6 Conclusions References On the Effect of Solution Representation and Neighborhood Definition in AutoML Fitness Landscapes 1 Introduction 2 Related Work 3 AutoML Fitness Landscape 3.1 Solution Representation and Neighborhood 3.2 Fitness Function 4 Characterization of the Fitness Landscapes 5 Exploratory Fitness Landscape Analysis 6 Results and Discussion 6.1 Fitness Distance Correlation 6.2 Dispersion Metric 6.3 Neutrality Rate 7 Conclusions and Future Work References Author Index