دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Shangwu Qian
سری: Essential Textbooks in Physics
ISBN (شابک) : 9781786347886, 9789811219955
ناشر: World Scientific
سال نشر: 2020
تعداد صفحات: 342
[299]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Essentials of Quantum Mechanics and Relativity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک کوانتومی و آماری کاربردی محور: دوره کوتاهی برای دانشمندان و مهندسان آینده - جلد 3: انتقال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مجموعه با پر کردن شکاف بین کتابهای سنتی کوانتومی و فیزیک آماری، یک دوره مقدماتی ایدهآل برای دانشآموزانی است که به دنبال رویکردی جایگزین برای درمان سنتی دانشگاهی هستند.
این رویکرد آموزشی به شدت بر کاربردهای علمی یا فناوری از طیف وسیعی از زمینه ها متکی است. برای هر مفهوم جدیدی که معرفی می شود، یک برنامه کاربردی برای اتصال نتایج نظری به یک موقعیت واقعی ارائه می شود. هر جلد دارای تمرینهای درون متنی و راهحلهای دقیق، با کاربردهای آسان برای درک است.
این جلد سوم چندین موضوع اساسی و پیشرفتهتر در مورد انتقال در فیزیک کوانتومی و آماری را پوشش میدهد. . بخش اول چگونگی تفاوت آمار کوانتومی فرمیونها و بوزونها را توضیح میدهد و تحت چه شرایطی میتوانند در چارچوب آماری کلاسیک-ذرهای که در جلد 2 دیده میشود ادغام شوند. این بخش همچنین اصول رساناها، نیمهرساناها، ابررساناها، ابرشارهها و بوز-انیشتین را توضیح میدهد. میعانات. بخش دوم انتقال های وابسته به زمان بین حالت های کوانتومی را معرفی می کند. تکامل زمانی یک مدل ساده دو سطحی حداقل زمینه لازم برای درک اصول پشت لیزر و کاربردهای متعدد آنها را فراهم میکند. نظریه اغتشاش وابسته به زمان نیز پوشش داده شده است، و همچنین رویکردهای استاندارد برای پراکندگی ذرات عظیم. یک درمان نیمه کلاسیک از برهمکنش میدان الکترومغناطیسی-ماده با تصاویر گرفته شده از فرآیندهای مختلف مانند پراکندگی فونون، توزیع بار یا چگالی اسپین توصیف شده است. بخش سوم و آخر کتاب مروری کوتاه بر الکترودینامیک کوانتومی با کاربردهای طیفسنجی جذب یا انتشار فوتون و طیف وسیعی از رژیمهای پراکندگی دارد. مقدمهای کوتاه درباره نقش فرآیندهای چند فوتونی در آزمایشهای مبتنی بر درهمتنیدگی کوانتومی وجود دارد.
Bridging the gap between traditional books on quantum and statistical physics, this series is an ideal introductory course for students who are looking for an alternative approach to the traditional academic treatment.
This pedagogical approach relies heavily on scientific or technological applications from a wide range of fields. For every new concept introduced, an application is given to connect the theoretical results to a real-life situation. Each volume features in-text exercises and detailed solutions, with easy-to-understand applications.
This third volume covers several basic and more advanced subjects about transitions in quantum and statistical physics. Part I describes how the quantum statistics of fermions and bosons differ and under what condition they can merge into the classical-particle-statistics framework seen in Volume 2. This section also describes the fundamentals of conductors, semiconductors, superconductors, superfluids and Bose–Einstein condensates. Part II introduces time-dependent transitions between quantum states. The time evolution of a simple two-level model gives the minimum background necessary to understand the principles behind lasers and their numerous applications. Time-dependent perturbation theory is also covered, as well as standard approaches to the scattering of massive particles. A semi-classical treatment of electromagnetic field–matter interaction is described with illustrations taken from a variety of processes such as phonon scattering, charge distribution or spin densities. The third and last part of the book gives a brief overview of quantum electrodynamics with applications to photon absorption or emission spectroscopies and a range of scattering regimes. There follows a short introduction to the role of multiphoton processes in quantum entanglement based experiments.
Contents Preface Quantum Mechanics 1. Preliminaries 1.1 Introduction 1.1.1 What is QM? 1.1.2 Why do we need QM? 1.1.3 How do QM explain atomic phenomena? 1.2 Review of some basic concepts of CM 1.2.1 Generalized coordinates 1.2.2 The Lagrange equations 1.2.3 Hamilton’s equations 1.2.4 Poisson brackets 1.3 Historical review: Experiments and theories 1.3.1 The work of Planck: Black body radiation 1.3.2 The work of Einstein: Photoelectric effect 1.3.3 The work of Bohr: Hydrogen atom 1.3.4 The work of Compton: Compton effect and the dual nature of light 1.3.4.1 Compton effect 1.3.4.2 Dual nature of light 1.3.5 The work of de Broglie: Matter waves 1.3.5.1 Bohr’s first postulate and the de Broglie hypothesis 1.3.5.2 The phase velocity of plane wave and group velocity of wave packet 1.3.6 The work of Schrodinger: Wave equation 1.3.7 The work of Born: Probability interpretation 1.3.8 The work of Heisenberg: Uncertainty principle 2. Postulates and One-Dimensional Problems 2.1 Postulates of quantum mechanics 2.1.1 Postulate 1: Quantum state 2.1.2 Postulate 2: Physical observable 2.1.3 Postulate 3: Time evolution of quantum state 2.1.4 Postulate 4: Measurement 2.1.5 Postulate 5: Expectation value 2.2 Preliminary applications on one-dimensional problems 2.2.1 One-dimensional free particle 2.2.2 Linear box 2.2.3 Potential barrier of infinite width 2.2.4 Tunneling effect 2.2.5 Linear harmonic oscillator 2.2.5.1 Analytic solution 2.2.5.2 Algebraic solution 3. Matrix Mechanics 3.1 Introduction 3.2 Matrix algebra 3.3 Matrix mechanics 3.4 Transformation of representations 3.4.1 Transformation of basis 3.4.2 Transformation of a state vector 3.4.3 Transformation of an operator 3.5 Coordinate representation and momentum representation 4. Central Forces and Angular Momentum 4.1 Spherically symmetric potential 4.1.1 Angular momentum 4.1.2 Hamiltonian 4.1.3 Separation of variables 4.1.4 Solution of the angular equation 4.1.5 Associated Legendre equation: Regular point and indicial equation 4.1.6 Spherical harmonics 4.1.7 Solution of the Schr¨odinger equation 4.2 Radial equation for the Coulomb potential 4.2.1 Radial part of the wavefunction: Principle quantum number 4.2.2 Eigenstates of the hydrogen atom 5. Summary, Problems and Solutions 5.1 A brief summary of this course 5.2 Problems 5.3 Quiz 1 5.4 Quiz 2 5.5 Final examination 5.6 Solutions of problems 5.7 Solutions of Quiz 1 5.8 Solutions of Quiz 2 5.9 Solution of final examination Relativity 6. Preliminaries 6.1 Introduction 6.1.1 What is the meaning of relativity in physics? 6.1.2 How relativity governs the form of all physical laws? 6.1.3 Why do we say quantum mechanics and special relativity are the two pillars of modern physics? 6.2 Vectors and tensors 6.2.1 Vectors 6.2.2 Tensors 6.2.3 Permutation symbol erst 6.2.4 The e–δ identity 6.3 Principle of Galilean relativity 6.4 Essentials of electrodynamics 6.4.1 Electrostatics and magnetostatics 6.4.1.1 Electric charge and electric field 6.4.1.2 Electric current 6.4.1.3 Biot–Savart law and Ampere’s law 6.4.2 Maxwell equations 6.4.2.1 Faraday’s law 6.4.2.2 Displacement current 6.4.2.3 Maxwell equation in vacuum 6.4.2.4 Energy density and energy flux, momentum density and momentum flux 6.4.2.5 Wave equation 7. Special Relativity: Kinematics 7.1 Attempts to locate the absolute frame: Michelson–Morley experiment 7.2 Postulates of special relativity and the Lorentz transformation 7.2.1 Postulates of special relativity 7.2.2 Lorentz transformation 7.3 The structure of spacetime 7.3.1 Comparison 7.3.2 Spacetime interval 7.3.2.1 Time-like interval 7.3.2.2 Light-like interval 7.3.2.3 Space-like interval 7.3.3 Proper time and coordinate time 7.3.4 Light cone 7.4 Law of causation and the relative character of simultaneity 7.5 Time dilation and length contraction 7.5.1 Time dilation 7.5.2 Length contraction 7.6 Velocity transformation 8. Relativistic Electrodynamics 8.1 Four-dimensional vectors and tensors 8.2 Four-dimensional current density vector 8.3 Four-dimensional potential vector 8.3.1 Scalar potential and vector potential 8.3.2 Four-dimensional potential vector 8.4 Field tensor 8.5 Electric field of a point charge in uniform motion 8.6 Generalization of Coulomb’s law to Maxwell equations using special relativity 9. Relativistic Dynamics 9.1 Equation of motion 9.2 Relativistic force Kμ: Force four-vector 9.3 Momentum four-vector 9.4 Lorentz force 9.5 Acceleration in relativistic dynamics 9.6 Quiz 10. More about Tensors 10.1 Contravariant and covariant vectors 10.1.1 Vectors in Euclidean space 10.1.2 Vectors in four-dimensional Minkowski spacetime 10.2 Lorentz tensors 10.2.1 Lowering and raising an index 10.2.2 Contraction 10.3 General tensors 10.4 Metric tensor 10.5 Christoffel symbol and the covariant derivative of a vector 10.6 Geodesics and parallel transport 10.7 Riemann curvature tensor 11. General Relativity 11.1 Principle of equivalence 11.1.1 Weak and strong principle of equivalence 11.1.2 Description of gravitation 11.2 Principle of general covariance 11.3 Principle of minimal coupling 11.4 Field equations: Relations between metric field and matter field 11.4.1 Einstein tensor 11.4.2 Einstein’s field equations 11.5 Final examination Appendices of Essentials of Quantum Mechanics Appendix A Wave Mechanics or Wave Statistical Mechanics Appendix B Alternative Derivation of the Propagator in Polar Coordinates by Feynman’s Physical Interpretation of the Characteristic Function Appendix C Separation of Variable Treatment for Solving Time-Dependent Potentials Appendix D Supersymmetry and Shape Invariance of the Effective Screened Potential Appendix E Knotted Pictures of Entangled States Appendix F Knotted Picture of the Whole Complete Quantum Measurement Process of Quantum Teleportation Appendices of Essentials of Relativity Appendix G Einstein’s Field Equations G.1 Riemann curvature tensor G.1.1 Non-commutativity of covariant derivative G.1.2 Curvature tensor and its properties G.1.3 Curvature tensor and parallel transport G.2 Einstein’s equation of gravitational field G.2.1 Process of obtaining Einstein’s equation of gravitational field G.2.2 Discussions G.2.3 Weak field linear approximation G.2.3.1 Linearized Ricci tensor G.2.3.2 Coordinate condition G.2.3.3 Energy-momentum tensor G.2.3.4 Field equation G.2.3.5 Newton’s approximation G.2.3.6 External spherically symmetric static mass G.3 Schwarzschild solution and its consequences G.3.1 Schwarzschild solution G.3.1.1 General expression of the metric of spherically symmetric static mass G.3.1.2 Christoffel symbol G.3.1.3 Einstein tensor G.3.1.4 Solution of the vacuum field equations G.3.1.5 Birkhoff theorem G.3.2 Motion of planets: Perihelion precession of Mercury G.3.2.1 Differential equation of the orbit of planet G.3.2.2 Precession of perihelion of Mercury G.3.3 Deflection of light ray in the Schwarzschild field G.3.4 Time delay of the return wave of radar signal G.3.5 Gravitational redshift G.3.6 Schwarzschild geometry G.3.6.1 Singularity and pseudo-singularity G.3.6.2 Schwarzschild event horizon Appendix H A Possible Modification of Einstein’s Theory of General Relativity Appendix I A Possible Interpretation on Distance-Dependent Effect of Gravitational Constant in Newton’s Theory of Gravitation Appendix J Metric of Rotating Charged Spherical Mass in Vacuum for Vector Graviton Metric Theory of Gravitation Appendix K Some Interesting Features for External Region of Spherical Symmetric Mass in New Theory of Gravitation VGM Bibliography Index