دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Selcuk S. Bayin
سری:
ISBN (شابک) : 1119580242, 9781119580249
ناشر: Wiley
سال نشر: 2019
تعداد صفحات: 955
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Essentials of Mathematical Methods in Science and Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ملزومات روشهای ریاضی در علوم و مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مقدمه ای جامع بر کاربردهای چند رشته ای روش های ریاضی، اصلاح شده و به روز شده
ویرایش دوم اصولات روش های ریاضی در علوم و مهندسی مقدمه ای بر مفاهیم کلیدی ریاضی حساب پیشرفته، معادلات دیفرانسیل، آنالیز پیچیده، و فیزیک ریاضی مقدماتی برای دانشجویان مهندسی و تحقیقات فیزیک ارائه می دهد. سبک قابل دسترس کتاب در قالب مدولار طراحی شده است که هر فصل یک موضوع را به طور کامل پوشش می دهد و بنابراین می توان آن را به طور مستقل خواند.
این ویرایش دوم به روز شده شامل دو فصل جدید و گسترده است که جبر خطی عملی و کاربردهای خطی را پوشش می دهد. جبر و همچنین یک فایل کامپیوتری که شامل کدهای Matlab است. برای افزایش درک مطالب ارائه شده، متن شامل مجموعه ای از تمرینات در پایان هر فصل است. نویسنده یک برخورد منسجم از موضوعات را با سبکی ارائه میکند که مهارتهای ریاضی ضروری را به راحتی برای مخاطبان چند رشتهای در دسترس قرار میدهد. این متن مهم:
• شامل مشتقات با جزئیات کافی است تا خواننده بتواند آنها را بدون جستجوی نتایج در قسمتهای دیگر کتاب دنبال کند
• تاکید بر تکنیکهای تحلیلی دارد< /p>
• شامل دو فصل جدید است که جبر خطی و کاربردهای آن را بررسی می کند
• شامل کدهای Matlab است که خوانندگان می توانند برای تمرین با روش های معرفی شده در کتاب استفاده کنند
این ویرایش جدید مبانی روشهای ریاضی در علوم و مهندسی که برای دانشجویان علوم و مهندسی نوشته شده است، تمام ویژگیهای موفق نسخه اول را حفظ میکند و شامل اطلاعات جدیدی میشود.
A comprehensive introduction to the multidisciplinary applications of mathematical methods, revised and updated
The second edition of Essentials of Mathematical Methods in Science and Engineering offers an introduction to the key mathematical concepts of advanced calculus, differential equations, complex analysis, and introductory mathematical physics for students in engineering and physics research. The book’s approachable style is designed in a modular format with each chapter covering a subject thoroughly and thus can be read independently.
This updated second edition includes two new and extensive chapters that cover practical linear algebra and applications of linear algebra as well as a computer file that includes Matlab codes. To enhance understanding of the material presented, the text contains a collection of exercises at the end of each chapter. The author offers a coherent treatment of the topics with a style that makes the essential mathematical skills easily accessible to a multidisciplinary audience. This important text:
• Includes derivations with sufficient detail so that the reader can follow them without searching for results in other parts of the book
• Puts the emphasis on the analytic techniques
• Contains two new chapters that explore linear algebra and its applications
• Includes Matlab codes that the readers can use to practice with the methods introduced in the book
Written for students in science and engineering, this new edition of Essentials of Mathematical Methods in Science and Engineering maintains all the successful features of the first edition and includes new information.
Contents in Brief Contents Preface Acknowledgments 1. Functional Analysis 1.1 Concept of Function 1.2 Continuity and Limits 1.3 Partial Differentiation 1.4 Total Differential 1.5 Taylor Series 1.6 Maxima and Minima of Functions 1.7 Extrema of Functions with Conditions 1.8 Derivatives and Differentials of Composite Functions 1.9 Implicit Function Theorem 1.10 Inverse Functions 1.11 Integral Calculus and the Definite Integral 1.12 Riemann Integral 1.13 Improper Integrals 1.14 Cauchy Principal Value Integrals 1.15 Integrals Involving a Parameter 1.16 Limits of Integration Depending on a Parameter 1.17 Double Integrals 1.18 Properties of Double Integrals 1.19 Triple and Multiple Integrals References Problems 2. Vector Analysis 2.1 Vector Algebra: Geometric Method 2.1.1 Multiplication of Vectors 2.2 Vector Algebra: Coordinate Representation 2.3 Lines and Planes 2.4 Vector Differential Calculus 2.4.1 Scalar Fields and Vector Fields 2.4.2 Vector Differentiation 2.5 Gradient Operator 2.5.1 Meaning of the Gradient 2.5.2 Directional Derivative 2.6 Divergence and Curl Operators 2.6.1 Meaning of Divergence and the Divergence Theorem 2.7 Vector Integral Calculus in Two Dimensions 2.7.1 Arc Length and Line Integrals 2.7.2 Surface Area and Surface Integrals 2.7.3 An Alternate Way to Write Line Integrals 2.7.4 Green’s Theorem 2.7.5 Interpretations of Green’s Theorem 2.7.6 Extension to Multiply Connected Domains 2.8 Curl Operator and Stokes’s Theorem 2.8.1 On the Plane 2.8.2 In Space 2.8.3 Geometric Interpretation of Curl 2.9 Mixed Operations with the Del Operator 2.10 Potential Theory 2.10.1 Gravitational Field of a Star 2.10.2 Work Done by Gravitational Force 2.10.3 Path Independence and Exact Differentials 2.10.4 Gravity and Conservative Forces 2.10.5 Gravitational Potential 2.10.6 Gravitational Potential Energy of a System 2.10.7 Helmholtz Theorem 2.10.8 Applications of the Helmholtz Theorem 2.10.9 Examples from Physics References Problems 3. Generalized Coordinates and Tensors 3.1 Transformations between Cartesian Coordinates 3.1.1 Basis Vectors and Direction Cosines 3.1.2 Transformation Matrix and Orthogonality 3.1.3 Inverse Transformation Matrix 3.2 Cartesian Tensors 3.2.1 Algebraic Properties of Tensors 3.2.2 Kronecker Delta and the Permutation Symbol 3.3 Generalized Coordinates 3.3.1 Coordinate Curves and Surfaces 3.3.2 Why Upper and Lower Indices 3.4 General Tensors 3.4.1 Einstein Summation Convention 3.4.2 Line Element 3.4.3 Metric Tensor 3.4.4 How to Raise and Lower Indices 3.4.5 Metric Tensor and the Basis Vectors 3.4.6 Displacement Vector 3.4.7 Line Integrals 3.4.8 Area Element in Generalized Coordinates 3.4.9 Area of a Surface 3.4.10 Volume Element in Generalized Coordinates 3.4.11 Invariance and Covariance 3.5 Differential Operators in Generalized Coord 3.5.1 Gradient 3.5.2 Divergence 3.5.3 Curl 3.5.4 Laplacian 3.6 Orthogonal Generalized Coordinates 3.6.1 Cylindrical Coordinates 3.6.2 Spherical Coordinates References Problems 4. Determinants and Matrices 4.1 Basic Definitions 4.2 Operations with Matrices 4.3 Submatrix and Partitioned Matrices 4.4 Systems of Linear Equations 4.5 Gauss’s Method of Elimination 4.6 Determinants 4.7 Properties of Determinants 4.8 Cramer’s Rule 4.9 Inverse of a Matrix 4.10 Homogeneous Linear Equations References Problems 5. Linear Algebra 5.1 Fields and Vector Spaces 5.2 Linear Combinations, Generators, and Bases 5.3 Components 5.4 Linear Transformations 5.5 Matrix Representation of Transformations 5.6 Algebra of Transformations 5.7 Change of Basis 5.8 Invariants under Similarity Transformations 5.9 Eigenvalues and Eigenvectors 5.10 Moment of Inertia Tensor 5.11 Inner Product Spaces 5.12 The Inner Product 5.13 Orthogonality and Completeness 5.14 Gram–Schmidt Orthogonalization 5.15 Eigenvalue Problem for Real Symmetric Matrices 5.16 Presence of Degenerate Eigenvalues 5.17 Quadratic Forms 5.18 Hermitian Matrices 5.19 Matrix Representation of Hermitian Operators 5.20 Functions of Matrices 5.21 Function Space and Hilbert Space 5.22 Dirac’s Bra and Ket Vectors References Problems 6. Practical Linear Algebra 6.1 Systems of Linear Equations 6.1.1 Matrices and Elementary Row Operations 6.1.2 Gauss-Jordan Method 6.1.3 Information From the Row-Echelon Form 6.1.4 Elementary Matrices 6.1.5 Inverse by Gauss-Jordan Row-Reduction 6.1.6 Row Space, Column Space, and Null Space 6.1.7 Bases for Row, Column, and Null Spaces 6.1.8 Vector Spaces Spanned by a Set of Vectors 6.1.9 Rank and Nullity 6.1.10 Linear Transformations 6.2 Numerical Methods of Linear Algebra 6.2.1 Gauss-Jordan Row-Reduction and Partial Pivoting 6.2.2 LU-Factorization 6.2.3 Solutions of Linear Systems by Iteration 6.2.4 Interpolation 6.2.5 Power Method for Eigenvalues 6.2.6 Solution of Equations 6.2.7 Numerical Integration References Problems 7. Applications of Linear Algebra 7.1 Chemistry and Chemical Engineering 7.1.1 Independent Reactions and Stoichiometric Matrix 7.1.2 Independent Reactions from a Set of Species 7.2 Linear Programming 7.2.1 The Geometric Method 7.2.2 The Simplex Method 7.3 Leontief Input–Output Model of Economy 7.3.1 Leontief Closed Model 7.3.2 Leontief Open Model 7.4 Applications to Geometry 7.4.1 Orbit Calculations 7.5 Elimination Theory 7.5.1 Quadratic Equations and the Resultant 7.6 Coding Theory 7.6.1 Fields and Vector Spaces 7.6.2 Hamming (7,4) Code 7.6.3 Hamming Algorithm for Error Correction 7.7 Cryptography 7.7.1 Single-Key Cryptography 7.8 Graph Theory 7.8.1 Basic Definition 7.8.2 Terminology 7.8.3 Walks, Trails, Paths and Circuits 7.8.4 Trees and Fundamental Circuits 7.8.5 Graph Operations 7.8.6 Cut Sets and Fundamental Cut Sets 7.8.7 Vector Space Associated with a Graph 7.8.8 Rank and Nullity 7.8.9 Subspaces in W_G 7.8.10 Dot Product and Orthogonal vectors 7.8.11 Matrix Representation of Graphs 7.8.12 Dominance Directed Graphs 7.8.13 Gray Codes in Coding Theory References Problems 8. Sequences and Series 8.1 Sequences 8.2 Infinite Series 8.3 Absolute and Conditional Convergence 8.3.1 Comparison Test 8.3.2 Limit Comparison Test 8.3.3 Integral Test 8.3.4 Ratio Test 8.3.5 Root Test 8.4 Operations with Series 8.5 Sequences and Series of Functions 8.6 M-Test for Uniform Convergence 8.7 Properties of Uniformly Convergent Series 8.8 Power Series 8.9 Taylor Series and Maclaurin Series 8.10 Indeterminate Forms and Series References Problems 9. Complex Numbers and Functions 9.1 The Algebra of Complex Numbers 9.2 Roots of a Complex Number 9.3 Infinity and the Extended Complex Plane 9.4 Complex Functions 9.5 Limits and Continuity 9.6 Differentiation in the Complex Plane 9.7 Analytic Functions 9.8 Harmonic Functions 9.9 Basic Differentiation Formulas 9.10 Elementary Functions 9.10.1 Polynomials 9.10.2 Exponential Function 9.10.3 Trigonometric Functions 9.10.4 Hyperbolic Functions 9.10.5 Logarithmic Function 9.10.6 Powers of Complex Numbers 9.10.7 Inverse Trigonometric Functions References Problems 10. Complex Analysis 10.1 Contour Integrals 10.2 Types of Contours 10.3 The Cauchy–Goursat Theorem 10.4 Indefinite Integrals 10.5 Simply and Multiply Connected Domains 10.6 The Cauchy Integral Formula 10.7 Derivatives of Analytic Functions 10.8 Complex Power Series 10.8.1 Taylor Series with the Remainder 10.8.2 Laurent Series with the Remainder 10.9 Convergence of Power Series 10.10 Classification of Singular Points 10.11 Residue Theorem References Problems 11 Ordinary Differential Equations 11.1 Basic Definitions for Ordinary Differential Equations 11.2 First-Order Differential Equations 11.2.1 Uniqueness of Solution 11.2.2 Methods of Solution 11.2.3 Dependent Variable Is Missing 11.2.4 Independent Variable Is Missing 11.2.5 The Case of Separable f(x, y) 11.2.6 Homogeneous f(x, y) of Zeroth Degree 11.2.7 Solution When f(x, y) Is a Rational Function 11.2.8 Linear Equations of First-order 11.2.9 Exact Equations 11.2.10 Integrating Factors 11.2.11 Bernoulli Equation 11.2.12 Riccati Equation 11.2.13 Equations that Cannot Be Solved for y' 11.3 Second-Order Differential Equations 11.3.1 The General Case 11.3.2 Linear Homogeneous Equations with Constant Coefficients 11.3.3 Operator Approach 11.3.4 Linear Homogeneous Equations with Variable Coefficients 11.3.5 Cauchy–Euler Equation 11.3.6 Exact Equations and Integrating Factors 11.3.7 Linear Nonhomogeneous Equations 11.3.8 Variation of Parameters 11.3.9 Method of Undetermined Coefficients 11.4 Linear Differential Equations of Higher Order 11.4.1 With Constant Coefficients 11.4.2 With Variable Coefficients 11.4.3 Nonhomogeneous Equations 11.5 Initial Value Problem and Uniqueness of the Solution 11.6 Series Solutions: Frobenius Method 11.6.1 Frobenius Method and First-order Equations References Problems 12. Second-Order Differential Equations and Special Functions 12.1 Legendre Equation 12.1.1 Series Solution 12.1.2 Effect of Boundary Conditions 12.1.3 Legendre Polynomials 12.1.4 Rodriguez Formula 12.1.5 Generating Function 12.1.6 Special Values 12.1.7 Recursion Relations 12.1.8 Orthogonality 12.1.9 Legendre Series 12.2 Hermite Equation 12.2.1 Series Solution 12.2.2 Hermite Polynomials 12.2.3 Contour Integral Representation 12.2.4 Rodriguez Formula 12.2.5 Generating Function 12.2.6 Special Values 12.2.7 Recursion Relations 12.2.8 Orthogonality 12.2.9 Series Expansions in Hermite Polynomials 12.3 Laguerre Equation 12.3.1 Series Solution 12.3.2 Laguerre Polynomials 12.3.3 Contour Integral Representation 12.3.4 Rodriguez Formula 12.3.5 Generating Function 12.3.6 Special Values and Recursion Relations 12.3.7 Orthogonality 12.3.8 Series Expansions in Laguerre Polynomials References Problems 13. Bessel’s Equation and Bessel Functions 13.1 Bessel’s Equation and Its Series Solution 13.1.1 Bessel Functions J_{±m} (x), N_m(x), and H_m^{(1,2)} (x) 13.1.2 Recursion Relations 13.1.3 Generating Function 13.1.4 Integral Definitions 13.1.5 Linear Independence of Bessel Functions 13.1.6 Modified Bessel Functions I_m(x) and K_m(x) 13.1.7 Spherical Bessel Functions j_l(x), n_l(x), and h_l^{(1,2)} (x) 13.2 Orthogonality and the Roots of Bessel Functions 13.2.1 Expansion Theorem 13.2.2 Boundary Conditions for the Bessel Functions References Problems 14. Partial Differential Equations and Separation of Variables 14.1 Separation of Variables in Cartesian Coordinates 14.1.1 Wave Equation 14.1.2 Laplace Equation 14.1.3 Diffusion and Heat Flow Equations 14.2 Separation of Variables in Spherical Coordinates 14.2.1 Laplace Equation 14.2.2 Boundary Conditions for a Spherical Boundary 14.2.3 Helmholtz Equation 14.2.4 Wave Equation 14.2.5 Diffusion and Heat Flow Equations 14.2.6 Time-Independent Schr¨odinger Equation 14.2.7 Time-Dependent Schr¨odinger Equation 14.3 Separation of Variables in Cylindrical Coordinates 14.3.1 Laplace Equation 14.3.2 Helmholtz Equation 14.3.3 Wave Equation 14.3.4 Diffusion and Heat Flow Equations References Problems 15. Fourier Series 15.1 Orthogonal Systems of Functions 15.2 Fourier Series 15.3 Exponential Form of the Fourier Series 15.4 Convergence of Fourier Series 15.5 Sufficient Conditions for Convergence 15.6 The Fundamental Theorem 15.7 Uniqueness of Fourier Series 15.8 Examples of Fourier Series 15.8.1 Square Wave 15.8.2 Triangular Wave 15.8.3 Periodic Extension 15.9 Fourier Sine and Cosine Series 15.10 Change of Interval 15.11 Integration and Differentiation of Fourier Series References Problems 16. Fourier and Laplace Transforms 16.1 Types of Signals 16.2 Spectral Analysis and Fourier Transforms 16.3 Correlation with Cosines and Sines 16.4 Correlation Functions and Fourier Transforms 16.5 Inverse Fourier Transform 16.6 Frequency Spectrums 16.7 Dirac-Delta Function 16.8 A Case with Two Cosines 16.9 General Fourier Transforms and Their Properties 16.10 Basic Definition of Laplace Transform 16.11 Differential Equations and Laplace Transforms 16.12 Transfer Functions and Signal Processors 16.13 Connection of Signal Processors References Problems 17. Calculus of Variations 17.1 A Simple Case 17.2 Variational Analysis 17.2.1 Case I: The Desired Function is Prescribed at theEnd Points 17.2.2 Case II: Natural Boundary Conditions 17.3 Alternate Form of Euler Equation 17.4 Variational Notation 17.5 A More General Case 17.6 Hamilton’s Principle 17.7 Lagrange’s Equations of Motion 17.8 Definition of Lagrangian 17.9 Presence of Constraints in Dynamical Systems 17.10 Conservation Laws References Problems 18 Probability Theory and Distributions 18.1 Introduction to Probability Theory 18.1.1 Fundamental Concepts 18.1.2 Basic Axioms of Probability 18.1.3 Basic Theorems of Probability 18.1.4 Statistical Definition of Probability 18.1.5 Conditional Probability and Multiplication Theorem 18.1.6 Bayes’ Theorem 18.1.7 Geometric Probability and Buffon’s Needle Problem 18.2 Permutations and Combinations 18.2.1 The Case of Distinguishable Balls with Replacement 18.2.2 The Case of Distinguishable Balls Without Replacement 18.2.3 The Case of Indistinguishable Balls 18.2.4 Binomial and Multinomial Coefficients 18.3 Applications to Statistical Mechanics 18.3.1 Boltzmann Distribution for Solids 18.3.2 Boltzmann Distribution for Gases 18.3.3 Bose–Einstein Distribution for Perfect Gases 18.3.4 Fermi–Dirac Distribution 18.4 Statistical Mechanics and Thermodynamics 18.4.1 Probability and Entropy 18.4.2 Derivation of β 18.5 Random Variables and Distributions 18.6 Distribution Functions and Probability 18.7 Examples of Continuous Distributions 18.7.1 Uniform Distribution 18.7.2 Gaussian or Normal Distribution 18.7.3 Gamma Distribution 18.8 Discrete Probability Distributions 18.8.1 Uniform Distribution 18.8.2 Binomial Distribution 18.8.3 Poisson Distribution 18.9 Fundamental Theorem of Averages 18.10 Moments of Distribution Functions 18.10.1 Moments of the Gaussian Distribution 18.10.2 Moments of the Binomial Distribution 18.10.3 Moments of the Poisson Distribution 18.11 Chebyshev’s Theorem 18.12 Law of Large Numbers References Problems 19 Information Theory 19.1 Elements of Information Processing Mechanisms 19.2 Classical Information Theory 19.2.1 Prior Uncertainty and Entropy of Information 19.2.2 Joint and Conditional Entropies of Information 19.2.3 Decision Theory 19.2.4 Decision Theory and Game Theory 19.2.5 Traveler’s Dilemma and Nash Equilibrium 19.2.6 Classical Bit or Cbit 19.2.7 Operations on Cbits 19.3 Quantum Information Theory 19.3.1 Basic Quantum Theory 19.3.2 Single-Particle Systems and Quantum Information 19.3.3 Mach–Zehnder Interferometer 19.3.4 Mathematics of the Mach–Zehnder Interferometer 19.3.5 Quantum Bit or Qbit 19.3.6 The No-Cloning Theorem 19.3.7 Entanglement and Bell States 19.3.8 Quantum Dense Coding 19.3.9 Quantum Teleportation References Problems Further Reading Mathematical Methods Textbooks: Mathematical Methods with Computers: Calculus/Advanced Calculus: Linear Algebra and its Applications: Complex Calculus: Differential Equations: Calculus of Variations: Fourier Series, Integral Transforms and Signal Processing: Series and Special Functions: Mathematical Tables: Classical Mechanics: Quantum Mechanics: Electromagnetic Theory: Probability Theory: Information Theory: Index