دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: John Lee, Jow-Ran Chang, Lie-Jane Kao سری: ISBN (شابک) : 9783031142826, 9783031142833 ناشر: Springer سال نشر: 2023 تعداد صفحات: 521 زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 36 Mb
در صورت تبدیل فایل کتاب Essentials of Excel VBA, Python, and R: Volume II: Financial Derivatives, Risk Management and Machine Learning, 2nd edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ملزومات Excel VBA، Python، و R: جلد دوم: مشتقات مالی، مدیریت ریسک و یادگیری ماشین، ویرایش دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی پیشرفته برای آمار کسب و کار به آموزش، تجزیه و تحلیل آماری و روشهای تحقیق با استفاده از مطالعات موردی تجاری و دادههای مالی با برنامههای Excel VBA، Python و R میپردازد. هر فصل خواننده را با دادههای نمونه برگرفته از سهام، شاخصهای سهام، گزینهها، و آتی اکنون در ویرایش دوم خود، به دو جلد تبدیل شده است که هر جلد به بخش های خاصی از برنامه درسی تجزیه و تحلیل کسب و کار اختصاص دارد. برای انعکاس عصر کنونی علم داده و یادگیری ماشین، برنامه های کاربردی مورد استفاده از Minitab و SAS به Python و R به روز شده اند تا خوانندگان برای صنعت فعلی آمادگی بهتری داشته باشند. این جلد دوم برای دوره های پیشرفته مشتقات مالی، مدیریت ریسک و یادگیری ماشین و مدیریت مالی طراحی شده است. در این جلد ما به طور گسترده از Excel، Python و R برای تجزیه و تحلیل موضوعات ذکر شده در بالا استفاده می کنیم. همچنین یک مرجع جامع برای محققان فعال امور مالی آماری و تحلیلگران تجاری است که به دنبال ارتقاء ابزارهای خود هستند. خوانندگان می توانند برای محتوای اختصاصی در مورد آمارهای مالی و تجزیه و تحلیل پورتفولیو به جلد اول نگاه کنند.
This advanced textbook for business statistics teaches, statistical analyses and research methods utilizing business case studies and financial data with the applications of Excel VBA, Python and R. Each chapter engages the reader with sample data drawn from individual stocks, stock indices, options, and futures. Now in its second edition, it has been expanded into two volumes, each of which is devoted to specific parts of the business analytics curriculum. To reflect the current age of data science and machine learning, the used applications have been updated from Minitab and SAS to Python and R, so that readers will be better prepared for the current industry. This second volume is designed for advanced courses in financial derivatives, risk management, and machine learning and financial management. In this volume we extensively use Excel, Python, and R to analyze the above-mentioned topics. It is also a comprehensive reference for active statistical finance scholars and business analysts who are looking to upgrade their toolkits. Readers can look to the first volume for dedicated content on financial statistics, and portfolio analysis.
Preface Contents 1 Introduction 1.1 Introduction 1.2 Brief Description of Chap. 1 of Volume 1 1.3 Structure of This Volume 1.3.1 Excel VBA 1.3.2 Financial Derivatives 1.3.3 Applications of Python, Machine Learning for Financial Derivatives, and Risk Management 1.3.4 Financial Management 1.3.5 Applications of R Programs for Financial Analysis and Derivatives 1.4 Summary Excel VBA 2 Introduction to Excel Programming and Excel 365 Only Features 2.1 Introduction 2.2 Excel’s Macro Recorder 2.3 Excel’s Visual Basic Editor 2.4 Running an Excel Macro 2.5 Adding Macro Code to a Workbook 2.6 Macro Button 2.7 Sub Procedures 2.8 Message Box and Programming Help 2.9 Excel 365 Only Features 2.9.1 Dynamic Arrays 2.9.1.1 Year to Date Performance of S&P 500 Components 2.9.1.2 SORT Function 2.9.1.3 FILTER Function 2.9.2 Rich Data Types 2.9.2.1 Stocks Data Type 2.9.2.1.1 Stock 2.9.2.1.2 Instrument Types 2.9.3 STOCKHISTORY Function 2.10 Summary References 3 Introduction to VBA Programming 3.1 Introduction 3.2 Excel’s Object Model 3.3 Intellisense Menu 3.4 Object Browser 3.5 Variables 3.6 Option Explicit 3.7 Object Variables 3.8 Functions 3.9 Adding a Function Description 3.10 Specifying a Function Category 3.11 Conditional Programming with the IF Statement 3.12 For Loop 3.13 While Loop 3.14 Arrays 3.15 Option Base 1 3.16 Collections 3.17 Summary References 4 Professional Techniques Used in Excel and VBA 4.1 Introduction 4.2 Finding the Range of a Table: CurrentRegion Property 4.3 Offset Property of the Range Object 4.4 Resize Property of the Range Object 4.5 UsedRange Property of the Range Object 4.6 Go to Special Dialog Box of Excel 4.7 Importing Column Data into Arrays 4.8 Importing Row Data into an Array 4.9 Transferring Data from an Array to a Range 4.10 Workbook Names 4.11 Dynamic Range Names 4.12 Global Versus Local Workbook Names 4.13 List of All Files in a Directory 4.14 Summary References Financial Derivatives 5 Binomial Option Pricing Model Decision Tree Approach 5.1 Introduction 5.2 Call and Put Options 5.3 Option Pricing—One Period 5.4 Put Option Pricing—One Period 5.5 Option Pricing―Two Period 5.6 Option Pricing—Four Period 5.7 Using Microsoft Excel to Create the Binomial Option Call Trees 5.8 American Options 5.9 Alternative Tree Methods 5.9.1 Cox, Ross, and Rubinstein 5.9.2 Trinomial Tree 5.9.3 Compare the Option Price Efficiency 5.10 Retrieving Option Prices from Yahoo Finance 5.11 Summary Appendix 5.1: EXCEL CODE—Binomial Option Pricing Model References 6 Microsoft Excel Approach to Estimating Alternative Option Pricing Models 6.1 Introduction 6.2 Option Pricing Model for Individual Stock 6.3 Option Pricing Model for Stock Indices 6.4 Option Pricing Model for Currencies 6.5 Futures Options 6.6 Using Bivariate Normal Distribution Approach to Calculate American Call Options 6.7 Black’s Approximation Method for American Option with One Dividend Payment 6.8 American Call Option When Dividend Yield is Known 6.8.1 Theory and Method 6.8.2 VBA Program for Calculating American Option When Dividend Yield is Known 6.9 Summary Appendix 6.1: Bivariate Normal Distribution Appendix 6.2: Excel Program to Calculate the American Call Option When Dividend Payments are Known References 7 Alternative Methods to Estimate Implied Variance 7.1 Introduction 7.2 Excel Program to Estimate Implied Variance with Black–Scholes Option Pricing Model 7.2.1 Black, Scholes, and Merton Model 7.2.2 Approximating Linear Function for Implied Volatility 7.2.3 Nonlinear Method for Implied Volatility 7.2.3.1 Newton–Raphson Method 7.2.3.2 Bisection Method 7.2.3.3 Compare Newton–Raphson Method and Bisection Method 7.3 Volatility Smile 7.4 Excel Program to Estimate Implied Variance with CEV Model 7.5 WEBSERVICE Function 7.6 Retrieving a Stock Price for a Specific Date 7.7 Calculated Holiday List 7.8 Calculating Historical Volatility 7.9 Summary Appendix 7.1: Application of CEV Model to Forecasting Implied Volatilities for Options on Index Futures References 8 Greek Letters and Portfolio Insurance 8.1 Introduction 8.2 Delta 8.2.1 Formula of Delta for Different Kinds of Stock Options 8.2.2 Excel Function of Delta for European Call Options 8.2.3 Application of Delta 8.3 Theta 8.3.1 Formula of Theta for Different Kinds of Stock Options 8.3.2 Excel Function of Theta of the European Call Option 8.3.3 Application of Theta 8.4 Gamma 8.4.1 Formula of Gamma for Different Kinds of Stock Options 8.4.2 Excel Function of Gamma for European Call Options 8.4.3 Application of Gamma 8.5 Vega 8.5.1 Formula of Vega for Different Kinds of Stock Options 8.5.2 Excel Function of Vega for European Call Options 8.5.3 Application of Vega 8.6 Rho 8.6.1 Formula of Rho for Different Kinds of Stock Options 8.6.2 Excel Function of Rho for European Call Options 8.6.3 Application of Rho 8.7 Formula of Sensitivity for Stock Options with Respect to Exercise Price 8.8 Relationship Between Delta, Theta, and Gamma 8.9 Portfolio Insurance 8.10 Summary References 9 Portfolio Analysis and Option Strategies 9.1 Introduction 9.2 Three Alternative Methods to Solve the Simultaneous Equation 9.2.1 Substitution Method (Reference: Wikipedia) 9.2.2 Cramer’s Rule 9.2.3 Matrix Method 9.2.4 Excel Matrix Inversion and Multiplication 9.3 Markowitz Model for Portfolio Selection 9.4 Option Strategies 9.4.1 Long Straddle 9.4.2 Short Straddle 9.4.3 Long Vertical Spread 9.4.4 Short Vertical Spread 9.4.5 Protective Put 9.4.6 Covered Call 9.4.7 Collar 9.5 Summary Appendix 9.1: Monthly Rates of Returns for S&P500, IBM, and MSFT Appendix 9.2: Options Data for IBM (Stock Price = 141.34) on July 23, 2021 References 10 Simulation and Its Application 10.1 Introduction 10.2 Monte Carlo Simulation 10.3 Antithetic Variables 10.4 Quasi-Monte Carlo Simulation 10.5 Application 10.6 Summary Appendix 10.1: EXCEL CODE—Share Price Paths References On the Web Applications of Python, Machine Learning for Financial Derivatives and Risk Management 11 Linear Models for Regression 11.1 Introduction 11.2 Loss Functions and Least Squares 11.3 Regularized Least Squares—Ridge and Lasso Regression 11.4 Logistic Regression for Classification: A Discriminative Model 11.5 K-fold Cross-Validation 11.6 Types of Basis Function 11.7 Accuracy Measures in Classification 11.8 Python Programming Example Questions and Problems for Coding References 12 Kernel Linear Model 12.1 Introduction 12.2 Constructing Kernels 12.3 Kernel Regression (Nadaraya–Watson Model) 12.4 Relevance Vector Machines 12.5 Gaussian Process for Regression 12.6 Support Vector Machines 12.7 Python Programming 12.8 Kernel Linear Model and Support Vector Machines References 13 Neural Networks and Deep Learning Algorithm 13.1 Introduction 13.2 Feedforward Network Functions 13.3 Network Training: Error Backpropagation 13.4 Gradient Descent Optimization 13.5 Regularization in Neural Networks and Early Stopping 13.6 Deep Feedforward Network Versus Deep Convolutional Neural Networks 13.7 Python Programing References 14 Alternative Machine Learning Methods for Credit Card Default Forecasting* 14.1 Introduction 14.2 Literature Review 14.3 Description of the Data 14.4 Alternative Machine Learning Methods 14.4.1 k-Nearest Neighbors 14.4.2 Decision Trees 14.4.3 Boosting 14.4.4 Support Vector Machines 14.4.5 Neural Networks 14.5 Study Plan 14.5.1 Data Preprocessing and Python Programming 14.5.2 Tuning Optimal Parameters 14.5.3 Learning Curves 14.6 Summary and Concluding Remarks Appendix 14.1: Python Codes References 15 Deep Learning and Its Application to Credit Card Delinquency Forecasting 15.1 Introduction 15.2 Literature Review 15.3 The Methodology 15.3.1 Deep Learning in a Nutshell 15.3.2 Deep Learning Versus Conventional Machine Learning Approaches 15.3.3 The Structure of a DNN and the Hyper-Parameters 15.4 Data 15.5 Experimental Analysis 15.5.1 Splitting the Data 15.5.2 Tuning the Hyper-Parameters 15.5.3 Techniques of Handling Data Imbalance 15.6 Results 15.6.1 The Predictor Importance 15.6.2 The Predictive Result for Cross-Validation Sets 15.6.3 Prediction on Test Set 15.7 Conclusion Appendix 15.1: Variable Definition References 16 Binomial/Trinomial Tree Option Pricing Using Python 16.1 Introduction 16.2 European Option Pricing Using Binomial Tree Model 16.2.1 European Option Pricing—Two Period 16.2.2 European Option Pricing—N Periods 16.3 American Option Pricing Using Binomial Tree Model 16.4 Alternative Tree Models 16.4.1 Cox, Ross, and Rubinstein Model 16.4.2 Trinomial Tree 16.5 Summary Appendix 16.1: Python Programming Code for Binomial Tree Option Pricing Appendix 16.2: Python Programming Code for Trinomial Tree Option Pricing References Financial Management 17 Financial Ratio Analysis and Its Applications 17.1 Introduction 17.2 Financial Statements: A Brief Review 17.2.1 Balance Sheet 17.2.2 Statement of Earnings 17.2.3 Statement of Equity 17.2.4 Statement of Cash Flows 17.2.5 Interrelationship Among Four Financial Statements 17.2.6 Annual Versus Quarterly Financial Data 17.3 Static Ratio Analysis 17.3.1 Static Determination of Financial Ratios 17.4 Two Possible Methods to Estimate the Sustainable Growth Rate 17.5 DFL, DOL, and DCL 17.5.1 Degree of Financial Leverage 17.5.2 Operating Leverage and the Combined Effect 17.6 Summary Appendix 17.1: Calculate 26 Financial Ratios with Excel Appendix 17.2: Using Excel to Calculate Sustainable Growth Rate Appendix 17.3: How to Compute DOL, DFL, and DCL with Excel References 18 Time Value of Money Determinations and Their Applications 18.1 Introduction 18.2 Basic Concepts of Present Values 18.3 Foundation of Net Present Value Rules 18.4 Compounding and Discounting Processes 18.4.1 Single Payment Case—Future Values 18.4.2 Continuous Compounding 18.4.3 Single Payment Case—Present Values 18.4.4 Annuity Case—Present Values 18.4.5 Annuity Case—Future Values 18.4.6 Annual Percentage Rate 18.5 Present and Future Value Tables 18.5.1 Future Value of a Dollar at the End of t Periods 18.5.2 Future Value of a Dollar Continuously Compounded 18.5.3 Present Value of a Dollar Received t Periods in the Future 18.5.4 Present Value of an Annuity of a Dollar Per Period 18.6 Why Present Values Are Basic Tools for Financial Management Decisions 18.6.1 Managing in the Stockholders’ Interest 18.6.2 Productive Investments 18.7 Net Present Value and Internal Rate of Return 18.8 Summary Appendix 18A Appendix 18B Appendix 18C Continuous Compounding Continuous Discounting Appendix 18D: Applications of Excel for Calculating Time Value of Money Future Value of a Single Amount Present Value of a Single Amount Future Value of an Ordinary Annuity Present Value of an Ordinary Annuity Appendix 18E: Tables of Time Value of Money References 19 Capital Budgeting Method Under Certainty and Uncertainty 19.1 Introduction 19.2 The Capital Budgeting Process 19.2.1 Identification Phase 19.2.2 Development Phase 19.2.3 Selection Phase 19.2.4 Control Phase 19.3 Cash-Flow Evaluation of Alternative Investment Projects 19.4 Alternative Capital-Budgeting Methods 19.4.1 Accounting Rate-of-Return 19.4.2 Internal Rate-of-Return Method 19.4.3 Payback Method 19.4.4 Net Present Value Method 19.4.5 Profitability Index 19.5 Capital-Rationing Decision 19.5.1 Basic Concepts of Linear Programming 19.5.2 Capital Rationing 19.6 The Statistical Distribution Method 19.6.1 Statistical Distribution of Cash Flow 19.7 Simulation Methods 19.7.1 Simulation Analysis and Capital Budgeting 19.8 Summary Appendix 19.1: Solving the Linear Program Model for Capital Rationing Example 19.3 Appendix 19.3: Hillier’s Statistical Distribution Method for Capital Budgeting Under Uncertainty References 20 Financial Analysis, Planning, and Forecasting 20.1 Introduction 20.2 Procedures for Financial Planning and Analysis 20.3 The Algebraic Simultaneous Equations Approach to Financial Planning and Analysis 20.4 The Linear Programming Approach to Financial Planning and Analysis 20.4.1 Profit Maximization 20.4.2 Linear Programming and Capital Rationing 20.4.3 Linear Programming Approach to Financial Planning 20.5 The Econometric Approach to Financial Planning and Analysis 20.5.1 A Dynamic Adjustment of the Capital Budgeting Model 20.5.2 Simplified Spies Model 20.6 Sensitivity Analysis 20.7 Summary Appendix 20.1: The Simplex Algorithm for Capital Rationing Appendix 20.2: Description of Parameter Inputs Used to Forecast Johnson & Johnson’s Financial Statements and Share Price Appendix 20.3: Procedure of Using Excel to Implement the FinPlan Program References Applications of R Programs for Financial Analysis and Derivatives 21 Hedge Ratio Estimation Methods and Their Applications 21.1 Introduction 21.2 Alternative Theories for Deriving the Optimal Hedge Ratio 21.2.1 Static Case 21.2.1.1 Minimum-Variance Hedge Ratio 21.2.1.2 Optimum Mean–Variance Hedge Ratio 21.2.1.3 Sharpe Hedge Ratio 21.2.1.4 Maximum Expected Utility Hedge Ratio 21.2.1.5 Minimum Mean Extended-Gini Coefficient Hedge Ratio 21.2.1.6 Optimum Mean-MEG Hedge Ratio 21.2.1.7 Minimum Generalized Semivariance Hedge Ratio 21.2.1.8 Optimum Mean-Generalized Semivariance Hedge Ratio 21.2.1.9 Minimum Value-at-Risk Hedge Ratio 21.2.2 Dynamic Case 21.2.3 Case with Production and Alternative Investment Opportunities 21.3 Alternative Methods for Estimating the Optimal Hedge Ratio 21.3.1 Estimation of the Minimum-Variance (MV) Hedge Ratio 21.3.1.1 OLS Method 21.3.1.2 Multivariate Skew-Normal Distribution Method 21.3.1.3 ARCH and GARCH Methods 21.3.1.4 Regime-Switching GARCH Model 21.3.1.5 Random Coefficient Method 21.3.1.6 Cointegration and Error Correction Method 21.3.2 Estimation of the Optimum Mean–Variance and Sharpe Hedge Ratios 21.3.3 Estimation of the Maximum Expected Utility Hedge Ratio 21.3.4 Estimation of Mean Extended-Gini (MEG) Coefficient Based Hedge Ratios 21.3.5 Estimation of Generalized Semivariance (GSV) Based Hedge Ratios 21.4 Applications of OLS, GARCH, and CECM Models to Estimate Optimal Hedge Ratio 21.5 Hedging Horizon, Maturity of Futures Contract, Data Frequency, and Hedging Effectiveness 21.6 Summary and Conclusions Appendix 21.1: Theoretical Models Appendix 21.2: Empirical Models Appendix 21.3: Monthly Data of S&P500 Index and Its Futures (January 2005–August 2020) Appendix 21.4: Applications of R Language in Estimating the Optimal Hedge Ratio References 22 Application of Simultaneous Equation in Finance Research: Methods and Empirical Results 22.1 Introduction 22.2 Literature Review 22.3 Methodology 22.3.1 Application of GMM Estimation in the Linear Regression Model 22.3.2 Applications of GMM Estimation in the Simultaneous Equations Model 22.3.3 Weak Instruments 22.4 Applications in Investment, Financing, and Dividend Policy 22.4.1 Model and Data 22.4.2 Results of Weak Instruments 22.4.3 Empirical Results 22.5 Conclusion Appendix 22.1: Data for Johnson & Johnson and IBM ch22Sec13 1.2 IBM Data Appendix 22.2: Applications of R Language in Estimating the Parameters of a System of Simultaneous Equations References 23 Three Alternative Programs to Estimate Binomial Option Pricing Model and Black and Scholes Option Pricing Model 23.1 Introduction 23.2 Microsoft Excel Program for the Binomial Tree Option Pricing Model 23.3 Black and Scholes Option Pricing Model for Individual Stock 23.4 Black and Scholes Option Pricing Model for Stock Indices 23.5 Black and Scholes Option Pricing Model for Currencies 23.6 R Codes to Implement the Binomial Trees Option Pricing Model 23.7 R Codes to Compute Option Prices by Black and Scholes Model 23.8 Summary Appendix 23.1: SAS Programming to Implement the Binomial Option Trees Appendix 23.2: SAS Programming to Compute Option Prices Using Black and Scholes Model References