دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Thomas Nield
سری:
ISBN (شابک) : 1098102932, 9781098102937
ناشر: O'Reilly Media
سال نشر: 2022
تعداد صفحات: 348
[350]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریاضیات ضروری برای علم داده: کنترل داده های خود را با جبر خطی اساسی، احتمالات و آمار در دست بگیرید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به ریاضیات مورد نیاز برای برتری در علم داده، یادگیری ماشین و آمار تسلط داشته باشید. در این کتاب، نویسنده توماس نیلد، شما را از طریق حوزههایی مانند حساب دیفرانسیل و انتگرال، احتمال، جبر خطی، و آمار و نحوه اعمال آنها در تکنیکهایی مانند رگرسیون خطی، رگرسیون لجستیک و شبکههای عصبی راهنمایی میکند. در طول مسیر، همچنین بینش های عملی در مورد وضعیت علم داده و نحوه استفاده از این بینش ها برای به حداکثر رساندن شغل خود به دست خواهید آورد. یاد بگیرید چگونه: • از کدهای پایتون و کتابخانه هایی مانند SymPy، NumPy، و scikit-learn برای کشف مفاهیم اساسی ریاضی مانند حساب دیفرانسیل و انتگرال، جبر خطی، آمار و یادگیری ماشین استفاده کنید. • تکنیک هایی مانند رگرسیون خطی، رگرسیون لجستیک، و شبکه های عصبی را به زبان انگلیسی ساده، با حداقل نمادهای ریاضی و اصطلاحات تخصصی درک کنید. • انجام آمار توصیفی و آزمون فرضیه بر روی یک مجموعه داده برای تفسیر مقادیر p و اهمیت آماری • بردارها و ماتریس ها را دستکاری کنید و تجزیه ماتریس را انجام دهید • ادغام و ایجاد دانش افزایشی از حساب دیفرانسیل و انتگرال، احتمال، آمار و جبر خطی، و اعمال آن در مدل های رگرسیون از جمله شبکه های عصبی • عملاً در حرفه علم داده حرکت کنید و از دامها، مفروضات و سوگیریهای رایج اجتناب کنید، در حالی که مجموعه مهارتهای خود را برای برجسته شدن در بازار کار تنظیم میکنید.
Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: • Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning • Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon • Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance • Manipulate vectors and matrices and perform matrix decomposition • Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks • Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
Cover Copyright Table of Contents Preface Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments Chapter 1. Basic Math and Calculus Review Number Theory Order of Operations Variables Functions Summations Exponents Logarithms Euler’s Number and Natural Logarithms Euler’s Number Natural Logarithms Limits Derivatives Partial Derivatives The Chain Rule Integrals Conclusion Exercises Chapter 2. Probability Understanding Probability Probability Versus Statistics Probability Math Joint Probabilities Union Probabilities Conditional Probability and Bayes’ Theorem Joint and Union Conditional Probabilities Binomial Distribution Beta Distribution Conclusion Exercises Chapter 3. Descriptive and Inferential Statistics What Is Data? Descriptive Versus Inferential Statistics Populations, Samples, and Bias Descriptive Statistics Mean and Weighted Mean Median Mode Variance and Standard Deviation The Normal Distribution The Inverse CDF Z-Scores Inferential Statistics The Central Limit Theorem Confidence Intervals Understanding P-Values Hypothesis Testing The T-Distribution: Dealing with Small Samples Big Data Considerations and the Texas Sharpshooter Fallacy Conclusion Exercises Chapter 4. Linear Algebra What Is a Vector? Adding and Combining Vectors Scaling Vectors Span and Linear Dependence Linear Transformations Basis Vectors Matrix Vector Multiplication Matrix Multiplication Determinants Special Types of Matrices Square Matrix Identity Matrix Inverse Matrix Diagonal Matrix Triangular Matrix Sparse Matrix Systems of Equations and Inverse Matrices Eigenvectors and Eigenvalues Conclusion Exercises Chapter 5. Linear Regression A Basic Linear Regression Residuals and Squared Errors Finding the Best Fit Line Closed Form Equation Inverse Matrix Techniques Gradient Descent Overfitting and Variance Stochastic Gradient Descent The Correlation Coefficient Statistical Significance Coefficient of Determination Standard Error of the Estimate Prediction Intervals Train/Test Splits Multiple Linear Regression Conclusion Exercises Chapter 6. Logistic Regression and Classification Understanding Logistic Regression Performing a Logistic Regression Logistic Function Fitting the Logistic Curve Multivariable Logistic Regression Understanding the Log-Odds R-Squared P-Values Train/Test Splits Confusion Matrices Bayes’ Theorem and Classification Receiver Operator Characteristics/Area Under Curve Class Imbalance Conclusion Exercises Chapter 7. Neural Networks When to Use Neural Networks and Deep Learning A Simple Neural Network Activation Functions Forward Propagation Backpropagation Calculating the Weight and Bias Derivatives Stochastic Gradient Descent Using scikit-learn Limitations of Neural Networks and Deep Learning Conclusion Exercise Chapter 8. Career Advice and the Path Forward Redefining Data Science A Brief History of Data Science Finding Your Edge SQL Proficiency Programming Proficiency Data Visualization Knowing Your Industry Productive Learning Practitioner Versus Advisor What to Watch Out For in Data Science Jobs Role Definition Organizational Focus and Buy-In Adequate Resources Reasonable Objectives Competing with Existing Systems A Role Is Not What You Expected Does Your Dream Job Not Exist? Where Do I Go Now? Conclusion Appendix A. Supplemental Topics Using LaTeX Rendering with SymPy Binomial Distribution from Scratch Beta Distribution from Scratch Deriving Bayes’ Theorem CDF and Inverse CDF from Scratch Use e to Predict Event Probability Over Time Hill Climbing and Linear Regression Hill Climbing and Logistic Regression A Brief Intro to Linear Programming MNIST Classifier Using scikit-learn Appendix B. Exercise Answers Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Index About the Author Colophon