ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Essential Biomechanics for Orthopedic Trauma. A Case-Based Guide

دانلود کتاب بیومکانیک ضروری برای ترومای ارتوپدی. راهنمای موردی

Essential Biomechanics for Orthopedic Trauma. A Case-Based Guide

مشخصات کتاب

Essential Biomechanics for Orthopedic Trauma. A Case-Based Guide

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783030369897, 9783030369903 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 328 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 26 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Essential Biomechanics for Orthopedic Trauma. A Case-Based Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بیومکانیک ضروری برای ترومای ارتوپدی. راهنمای موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Editors
Contributors
Part I: Stress, Strain, and Young’s Modulus—How They Relate to Fracture Healing
	1: Biomechanical Principles of Fracture Healing
		Introduction
		Material Strength
			Stress-Strain
			Anisotropy
			Fatigue
			Viscoelasticity
		Structural Strength
			Size
			Material Distribution
			Stress Concentrations
		Clinical Implications
		References
	2: Perren’s Strain Theory and Fracture Healing
		Introduction
		Bone
		Fracture
			Mechanical and Biomechanical Effects
			Biology of Fracture Healing
		Biomechanics of Bone Healing
			Methods of Fracture Stabilization
			Conservative Fracture Treatment
			Relative Stability
			Indirect Fracture Healing: Perren’s Strain Theory
			Absolute Stability
			Direct Fracture Healing: Biomechanics
		Summary
		References
	3: Case Studies in Fracture Healing and Nonunions
		Introduction
		Primary or Direct Fracture Healing
			Case 1 (Fig. 3.1)
		Failure of Fracture Healing
			Case 2 (Fig. 3.3)
		Secondary Fracture Healing
			Case 3 (Fig. 3.4)
		Secondary Fracture Healing
			Case 4 (Fig. 3.5)
			Case 5 (Fig. 3.6)
		Hypertrophic Nonunion
			Case 6: Failed Bone Healing (Fig. 3.8)
		Conclusion
		References
Part II: External Fixation Principles with Case Examples
	4: Biomechanics of External Fixators for Fracture Fixation: Uniplanar, Multiplanar, and Circular Frames
		Introduction
		Indications for External Fixation
		Biomechanics of External Fixator
		The Importance of Pins and Wires in Biomechanics of External Fixators
		Summary
		References
	5: Diaphyseal Fractures
		Introduction
		Implant and Anatomic Considerations
			Pins
			Clamps
			Rods
			Anatomic Considerations
		Indications for Temporary External Fixation
			Damage Control Orthopedics
			Provisional Fixation
		Construction of External Fixator Frames
			Pin Insertion Technique
			Management of Diaphyseal Fractures
			Management of Intra-articular Fractures
		Complications and Pin Care
		Conclusion
		References
	6: Periarticular Fractures
		Introduction
		External Fixation for Temporary Stabilization
		External Fixation for Definitive Treatment
		Technical Issues with Periarticular External Fixation
		Advantages of External Fixation in Periarticular Fractures
		Current Indications
		Biomechanics of Periarticular External Fixation—General Principles
		Definitive Frames
		Case 1: Temporary Joint-Spanning External Fixation
		Case 2: Same-Side Definitive External Fixation
		Case 3: Articulated External Fixation
		Conclusions
		References
	7: External Fixators for Limb Lengthening
		General Principles
		Biology of Distraction
		External Fixator Construction
		Mechanical Modulation to Encourage Bone Formation
		Biological Adjuvants
		Complications
		Integrated Techniques
		Lengthening Over a Nail (LON)
		Lengthening and Then Nailing (LATN) and Transport and Then Nailing (TATN)
		References
	8: External Fixators for Deformity Correction
		Introduction
		Why Circular Fixation?
		Deformity Assessment and Strategy
		Type of Circular Frame
		Circular External Fixator Stability
		Need for Neurolysis
		When to Remove the Frame?
		Complications
		Summary
		References
Part III: Tension Band Wire Principles with Case Examples
	9: Biomechanics of Tension Band Constructs for Fracture Fixation
		Introduction
		Key Concepts for Tension Band Constructs
			Determine the Tension and Compression Surfaces of the Fracture
			Ensure the Fracture Can Withstand Stable Compression, with an Intact Opposite Cortex
			Apply Fixation to Withstand Tension
		Case 1
			Why This Works
		Case 2
			Why This Works
		Case 3
			Why This Works
		Conclusion
		References
	10: Olecranon Fractures
		Introduction
		Descriptive Olecranon Fracture Classification
		Indications for Olecranon Fracture Tension Band
		Surgical Tips and Tricks Based on Biomechanical Studies
		K-Wires
		Wire
		Conclusion
		References
	11: Patella Fractures
		Introduction
		Anatomy
		Biomechanics of the Extensor Mechanism and Its Relation to Injury
		General Management Principles
		Case 1
		Physical Examination
		Nonoperative Management
		Case 2
		Vertical Fractures
		Case 3
		Case 4
		Modified Anterior Tension Band Wiring with Kirschner Wires
			Surgical Technique: Modified Anterior Tension Band Wiring with Kirschner Wires
		Case 5
		Case 6
		Tension Band Wiring Using Cannulated Screws
			Surgical Technique
		Adjunctive Techniques
		Outcomes
		References
Part IV: Plating Principles with Case Examples
	12: Biomechanics of Plate and Screw Constructs for Fracture Fixation
		Introduction
		A Historical Perspective
		Biomechanical Functions of a Plate
		Biomechanical Properties of a Plate
		Conclusions
		References
	13: Nonlocking Plate Functions
		Compression Plating
		Diaphyseal Compression Plating: Patient Example and Surgical Technique
		Neutralization/Protection Plating
			Neutralization Plating Patient Examples
		Buttress/Antiglide Plating
			Buttress/Antiglide Plate Function Patient Examples
		Tension Band Plating
			Tension Band Plating Patient Examples
		References
	14: Nonlocking Plate Functions 2
		Bridge Plating
			Length of the Plate
			Working Length of the Plate
			Screw Design and Density
		Case 1: Bridge Plate
			Why This Works
			Wave Plate
		Case 2: Wave Plate
			Why This Works
			Fixed Angle Devices
		Case 3
			Why This Works
		Case 4: Dynamic Condylar Screw
			Why This Works
		Case 5: Sliding Hip Screw
			Why This Works
		Conclusion
		References
	15: Locked Plating
		Introduction
		Monoaxial/Unidirectional Locking Screws
		Polyaxial/Multidirectional Locking Screws
		Flexible Locking
		Summary
		References
Part V: Intramedullary Nailing Principles with Case Examples
	16: Biomechanics of Intramedullary Nails Relative to Fracture Fixation and Deformity Correction
		Introduction
		Biomechanics
		Fractures and Deformities
		Case Examples
			Case 1: Transverse Midshaft Femur Fracture (Fig. 16.1)
				Why This Worked
			Case 2: Comminuted Distal Femoral Shaft Fracture (Fig. 16.2)
				Why This Worked
			Case 3: Comminuted Femoral Shaft Fracture with Long Lateral Butterfly Fragment (Fig. 16.3)
				Why This Worked
			Case 4: Segmental Tibia Fracture, Including Proximal Metaphyseal Fracture Line (Fig. 16.4)
				Why This Worked
			Case 5: Humerus Fracture Nonunion After Nailing (Fig. 16.5)
				Why This May Not Have Worked
		References
	17: Diaphyseal Fractures
		Introduction
		Case 1
			Background
			Treatment
			Discussion
		Case 2
			Background
			Treatment
			Discussion
		Case 3
			Background
			Treatment
			Discussion
		References
	18: Periarticular and Intra-articular Fractures
		Introduction
		Key Concepts for Intramedullary Nailing in Peri- and Intra-articular Fracture
			Advantages and Disadvantages
			Reduction
			Methods to Overcome Biomechanical Disadvantages
			Advances in Interlocking Bolts
		Cases
			Case 1
				Why This Did Not Work
			Case 2
				Why This Did Not Work
			Case 3
				Why This Did Not Work
			Case 4
				Why This Worked
			Case 5
				Why This Worked
			Case 6
				Why This Worked
			Case 7
				Why This Worked
			Case 8
				Why This Worked
		Recent Biomechanical Studies Comparing IM Fixation and Plating
		Conclusion
		References
	19: Use in Nonunions and Malunions
		Introduction
		Key Concepts for Intramedullary Malunion and Nonunion Repair
			Manage Adjacent Joint Mobility
			Determine the Etiology
			Recognize the Deformity and Restore Axis
			Preserve the Local Biologic Environment
			Maximize Stability in the Short Segment
		Case 1: Tibial Exchange Nailing
			Why This Works
		Case 2: Closed Femoral Shortening
			Why This Works
		Case 3: Tibial Diaphyseal Metaphyseal Clamshell Osteotomy
			Why This Works
		Case 4: Recalcitrant Distal Femur Plate Nonunion Exchanged to Nail
			Why This Works
		Conclusion
		References
	20: Use in Arthrodesis
		Introduction
		Key Concepts for Intramedullary Arthrodesis
		Case 1
			Why This Works
		Case 2
			Why This Works
		Case 3
			Why This Works
		Case 4
			Why This Works
		Case 5
			Why This Works
		Case 6
			Why This Works
		Case 7
			Why This Works
		Conclusion
		References
	21: Intramedullary Lengthening and Compression Nails
		Introduction
		Preoperative Assessment
		Intraoperative Execution
		Postoperative Protocol
		Case 1
			Why This Worked
		Case 2
			Why This Worked
		Case 3
			Why This Worked
		Complications
			Failure to Distract
			Crown Failure
			Premature Consolidation
			Regenerate Insufficiency
			MRI Incompatibility
			Corrosion and Late Failure
			Compression Nail and Staged Lengthening
		Conclusion
		References
Index




نظرات کاربران