دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: Reprint نویسندگان: A. N. Tikhonov, A. A. Samarskii سری: Dover Books on Physics ISBN (شابک) : 0486664228, 9780486664224 ناشر: Dover Publications سال نشر: 2011 تعداد صفحات: 781 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Equations of Mathematical Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات فیزیک ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیک ریاضی نقش مهمی در مطالعه بسیاری از فرآیندهای فیزیکی ایفا می کند - هیدرودینامیک، الاستیسیته، و الکترودینامیک، به نام چند. به دلیل گستره بسیار زیاد و تنوع مسائلی که فیزیک ریاضی با آن ها سروکار دارد، این متن پیشرفته کامل در سطح کارشناسی یا کارشناسی ارشد تنها مسائلی را در نظر می گیرد که منجر به معادلات دیفرانسیل جزئی می شوند.
Mathematical physics plays an important role in the study of many physical processes -- hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations.
CONTENTS Publisher's Note. xiv Preface to the second edition. xiv Preface to the first edition. xv I. CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS 1. Classification of partial differential equations of the second order. 1.1. Differential equations with two independent variables. 1 1.2. Classification of equations of the second order with several independent variables. 9 1.3. Canonical forms of linear equations with constant coefficients. 11 Problems on Chapter I. 13 II. EQUATIONS OF THE HYPERBOLIC TYPE 1. Simplest problems leading to equations of the hyperbolic type. Formulation of boundary problems. 15 1.1. Equation of small transverse vibrations of a string. 15 1.2. Equation of longitudinal vibrations of rods and strings. 19 1.3. Vibrational energy of a string. 21 1.4. Derivation of the transmission line equation. 23 1.5. Transverse vibrations of a membrane. 24 1.6. Equations of hydrodynamics and acoustics. 27 1.7. Boundary and initial conditions. 32 1.8. Reduction of the general problem. 37 1.9. Formulation of boundary problems for the case of several variables. 39 1.10. Uniqueness theorem. 39 Problems. 43 2. Method of propagating waves. 45 2.1. D' Alembert's formula. 45 2.2. Physical interpretation. 47 2.3. Continuity of solutions. 54 2.4. Semi-infinite region and the method of extending initial data. 57 2.5. Problems for a finite segment. 65 2.6. Dispersion of waves. 68 2.7. Integral wave equation. 73 2.8. Propagation of discontinuities along the characteristic curves. 78 Problems. 79 3. Method of separation of variables. 82 3.1. Equation of free vibrations of a string. 82 3.2. Interpretation of the solution. 88 3.3. Representation of an arbitrary vibration as a superposition of standing waves. 92 3.4. Inhomogeneous equations. 97 3.5. First general boundary problem 104 3.6. Boundary problems with stationary inhomogeneities. 105 3.7. Steady state problems. 108 3.8. Concentrated force. 113 3.9. General scheme of the method of separation of variables. 116 Problems. 123 4. Problem with data on characteristics. 125 4.1. Formulation of the problem. 125 4.2. Method of successive approximations. 127 Problems. 133 5. Solution of general linear equations of the hyperbolic type. 133 5.1. Conjugate differential operators. 133 5.2. Integral form of solution. 134 5.3. Physical interpretation of Riemann's function. 137 5.4. Equations with constant coefficients. 141 Problems on Chapter II. 145 Appendices to Chapter II. 147 I. Vibrations of strings of musical instruments. 147 II. Vibrations of rods. 150 III. Vibrations of a loaded string. 155 IV. Equations of gas dynamics and theory of shock waves. 163 V. Dynamics of the absorption of gases. 175 VI. Physical analogies. 186 III. EQUATIONS OF THE PARABOLIC TYPE 1. Physical problems leading to equations of the parabolic type. Formulation of boundary-value problems. 191 1.1. Linear problem of heat conduction. 191 1.2. Equation of diffusion. 196 1.3. Heat conduction in space. 197 1.4. Formulation of boundary-value problems. 200 1.5. The maximum value principle. 206 1.6. Uniqueness theorem. 209 1.7. Uniqueness theorem for an infinite region. 212 2. Method of the separation of variables. 213 2.1. Homogeneous boundary-value problem. 213 2.2. Source function. 217 2.3. Boundary problems with discontinuous initial conditions. 220 2.4. Inhomogeneous equation of heat conduction. 228 2.5. First general boundary problem. 231 Problems. 233 3. Problems in an infinite region. 235 3.1. Source function for an infinite region. 235 3.2. Heat propagation in an infinite region. 243 3.3. Boundary-value problems for a semi-infinite straight line. 253 3.4. Steady state problems. 262 Problems on Chapter III. 266 Appendices to Chapter III. 268 I. Temperature waves. 268 II. Effect of radioactive decay on the temperature of the earth's crust. 272 III. Method of similarity in the theory of heat conduction. 278 IV. Problem of freezing. 283 VI. Einstein-Kolmogorov equation. 288 VI. $\delta$-function. 292 IV. EQUATIONS OF ELLIPTIC TYPE 1. Problems reducible to Laplace's equation. 301 1.1. Steady heat flow. Formulation of boundary-value problems. 301 1.2. Potential flow in a fluid. Potential of a stationary current and an electrostatic field. 302 1.3. Laplace's equation in a curvilinear system of coordinates. 304 1.4. Some particular solutions of Laplace's equation. 308 1.5. Harmonic functions and analytic functions of a complex variable. 310 1.6. The inversion transformation. 312 2. General properties of harmonic functions. 314 2.1. Green's formula. Integral representation of a solution. 314 2.2. Some fundamental properties of harmonic functions. 320 2.3. Uniqueness and stability of the first boundary-value problem 324 2.4. Problems with discontinuous boundary conditions. 325 2.5. Isolated singular points. 327 2.6. Regularity of a harmonic function at infinity. 329 2.7. External boundary-value problem. Uniqueness of solution for two- and three-dimensional problems. 330 2.8. Second boundary-value problem. Condition of regularity at infinity. Uniqueness theorem. 334 3. Solution of boundary-value problems for the simplest regions by the method of separation of variables. 338 3.1. First boundary-value problem for a circle. 338 3.2. Poisson's integral. 343 3.3. Case of discontinuous boundary values. 347 4. Source function. 349 4.1. Source function for the equation $\Delta v=0$ and its fundamental properties. 349 4.2. Method of electrostatic images and the source function for a sphere. 354 4.3. Source function for a circle. 357 4.4. Source function for a half-space. 359 5. Potential theory. 360 5.1. Volume potential. 360 5.2. Plane problem. Logarithmic potential. 362 5.3. Improper integrals. 365 5.4. First derivatives of the volume potential. 372 5.5. Second derivatives of the volume potential. 376 5.6. Surface potentials. 380 5.7. Surfaces and Lyapunov's curves. 384 5.8. Discontinuity of the potential of a double layer. 388 5.9. Properties of the potential of a single layer. 392 5.10. Application of surface potentials to the solution of boundary problems. 396 5.11. Integral equations. 401 6. Method of finite differences. 406 6.1. Concept of the method of finite differences for Laplace's equation. 406 6.2. Method of successive approximations for the solution of difference equations. 409 6.3. Modelling methods. 412 Problems on Chapter IV. 413 Appendices to Chapter IV. 416 I. Asymptotic expression for the volume potential. 416 II. Problems of electrostatics. 419 III. Fundamental problem of electrical prospecting. 426 IV. Determination of vector fields. 433 V. Application of the method of conformal mapping to electrostatics. 436 VI. Application of the method of conformal mapping to hydrodynamics. 440 VII. Biharmonic equations. 447 V. WAVE PROPAGATION IN SPACE 1. Problem with initial conditions. Method of averaging. 452 1.1. Method of averaging. 452 1.2. Method of descent. 455 1.3. Physical interpretation. 457 1.4. Method of images. 459 2. Integral relation. 461 2.1. Derivation of the integral relation. 461 2.2. Consequences of the integral relation. 465 3. Vibrations of finite volumes. 468 3.1. General scheme of the method of separation of variables. Standing waves. 468 3.2. Vibrations of a rectangular membrane. 474 3.3. Vibrations of a circular membrane. 478 Problems on Chapter V. 485 Appendices to Chapter V. 486 I. Reduction of the equations of the theory of elasticity to the wave equation. 486 II. Equations of the electromagnetic field. 489 VI. HEAT CONDUCTION IN SPACE 1. Heat conduction in infinite space. 503 1.1. Temperature propagation function. 503 1.2. CO:1duction of heat in infinite space. 508 2. Heat conduction in finite bodies. 512 2.1. Outline of the method of separation of variables. 512 2.2. Cooling of a circular cylinder. 516 2.3. Determination of critical sizes. 519 3. Boundary problems for regions with moving boundaries. 521 3.1. Green's theorem for the equation of heat conduction and the source function. 521 3.2. Solution of the boundary-value problem. 525 3.3. Source function for the segment. 528 4. Thermal potentials. 530 4.1. Properties of thermal potentials of a single and of a double layer. 530 4.2. Solution of boundary-value problems. 533 Problems on Chapter VI. 535 Appendices to Chapter VI. 537 I. Diffusion of a cloud. 537 II. Demagnetization of a cylinder by a coil. 540 III. Method of finite differences for the equation of heat conduction. 545 VII. EQUATIONS OF ELLIPTIC TYPE (CONTINUATION) 1. Fundamental problems leading to the equation $\Delta v+cv=0$. 556 1.1. Steady vibrations. 556 1.2. Diffusion of gas in the presence of decay and with chain reactions. 557 1.3. Diffusion in a moving medium. 558 1.4. Formulation of internal boundary problems for the equation $\Delta v+cv=0$. 559 2. The source function. 560 2.1. The source function. 560 2.2. Integral representation of the solution. 563 2.3. Potentials. 567 3. Problems for an infinite region. The radiation principle. 570 3.1. The equation $\Delta v+cv=-f$ in infinite space. 570 3.2. Principle of vanishing absorption. 571 3.3. Principle of limiting amplitude. 573 3.4. Radiation condition. 575 4. Problems of the mathematical theory of diffraction. 580 4.1. Statement of the problem. 580 4.2. Uniqueness of the solution of the diffraction problem. 581 4.3. Diffraction by a sphere. 584 Problems on Chapter VII. 592 Appendices to Chapter VII. 595 I. Waves in cylindrical guides. 595 II. Electromagnetic vibrations in hollow resonators. 606 III. Skin effect. 616 IV. Propagation of radiowaves over the surface of the earth. 621 SUPPLEMENT. SPECIAL FUNCTIONS Introduction. 627 1. Equations for special functions. 627 2. Formulation of boundary problems in the case $k(a)=0$. 628 I. CYLINDRICAL FUNCTIONS 1. Cylindrical functions. 637 2. Boundary-value problems for Bessel's equation. 648 3. Various types of cylindrical functions. 652 4. Integral representations. Asymptotic formulae. 661 5. Fourier-Bessel's integral and some integrals containing Bessel functions. 670 6. Representation of cylindrical functions by means of contour integrals. 675 II. SPHERICAL FUNCTIONS 1. Legendre polynomials. 686 2. Harmonic polynomials and spherical functions. 703 3. Some examples of application of spherical functions. 716 III. CHEBYSHEV-HERMITE AND CHEBYSHEV-LAGUERRE POLYNOMIALS 1. Chebyshev-Hermite polynomials. 725 2. Chebyshev-Laguerre polynomials. 728 3. Simplest problems for Schrodinger's equation. 736 TABLES OF THE ERROR INTEGRAL AND SOME CYLINDRICAL FUNCTIONS. 745 Index. 754