دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Marek Pronobis
سری:
ISBN (شابک) : 0128199210, 9780128199213
ناشر: Elsevier Science Ltd
سال نشر: 2020
تعداد صفحات: 333
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Environmentally Oriented Modernization of Power Boilers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نوسازی زیست محیطی دیگ های برق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدرن سازی دیگ های برق با محوریت زیست محیطی نحوه مقاوم سازی و ارتقاء دیگ های برق را در نیروگاه های حرارتی و CHP با تاکید بر دیگ های سوخت پودر شده (PF) توضیح می دهد. این کار راه های مستقیمی را برای راندمان بالاتر دیگ بخار، کاهش انتشار مضر، نوسازی سیستم آسیاب سوخت، انعطاف پذیری سوخت، انعطاف پذیری عملیات دیگ، کاهش خوردگی، فرسایش و رسوب ایجاد می کند. همچنین چگونگی ادغام سیستم های کاهش انتشار در عملیات دیگ بخار را بررسی می کند. این کار برای مهندسین و دانشجویان فارغ التحصیل و همچنین برای مدیریت نیروگاه برنامه ریزی شده است. برای دومی، به یافتن بهترین راهحل برای نوسازی لازم کمک میکند و به عنوان کمکی در سازماندهی مناقصهها و همچنین در ارزیابی پروژههای ارائه شده کمک میکند. مهم ترین راه حل های مربوط به کاهش انتشار دیگ بخار، از جمله انتشار CO2
Environmentally oriented modernization of power boilers explains how to retrofit and upgrade power boilers in aging thermal and CHP plants, with emphasis on pulverized fuel boilers (PF). The work provides direct avenues to higher boiler efficiency, harmful emissions reduction, fuel grinding system modernization, fuel flexibility, boiler operation flexibilization, reduced corrosion, erosion, and fouling. It also explores how to integrate emission reduction systems into boiler operations. The work is planned for engineers and graduate students as well as for power plant management. For the latter, it helps find the best solution for the necessary modernization and functions as an aid in organizing tenders as well as in evaluating projects offered.
Cover Environmentally Oriented Modernization of Power Boilers Copyright Dedication Chapter 1 - Introduction References Chapter 2 - Boiler efficiency and thermal losses References Chapter 3 - Modernization to reduce the flue gas loss 3.1 - Lowering of flue gas temperature 3.1.1 - Modernization of pressure convective surfaces 3.1.1.1 - Plain tube heat exchangers with in-line and staggered arrangement 3.1.1.2 - Staggered and in-line banks of longitudinally finned tubes 3.1.1.3 - Staggered and in-line tube banks with transverse ribs Flag-type surfaces of the evaporator 3.1.2 - Modernization of air heaters increasing the heat transfer 3.1.2.1 - Types of air heaters 3.1.2.2 - Modernization of rotary air heaters 3.1.2.3 - Modernization of recuperative air heaters by intensifying the heat transfer inside the tubes 3.1.2.4 - Replacing the existing air heater with the heat pipe air heater 3.1.3 - Application of a system (or modification of an existing one) for cleaning of heated surfaces from ash deposits 3.1.3.1 - Jet blowers 3.1.3.2 - Acoustic cleaners 3.1.3.3 - Shot cleaning systems 3.1.3.4 - Rapping devices 3.1.3.5 - Choice of cleaning concept 3.1.4 - The influence of fouling on the operation of rotary air heaters 3.1.5 - Implementation of an additional heat exchanger 3.1.6 - Lowering of feedwater temperature in the air heater 3.2 - Selection of the minimum flue gas temperature at the boiler outlet 3.2.1 - Dew point of the flue gas 3.2.2 - Methods for determining the acid dew point 3.2.3 - Dew point measurements in boilers 3.2.4 - Influence of the tubular air heater structure on the permissible outlet temperature of the boiler 3.2.5 - The range of reduction of flue gas outlet temperature in regenerative rotary air heaters 3.2.6 - Heat pipe air heater 3.2.7 - Preheating the air at the boiler inlet 3.3 - Optimization of flue gas outlet temperature 3.3.1 - Objective function 3.3.2 - Change in boiler efficiency as a function of load 3.3.3 - Block flow diagram of the flue gas outlet temperature selection 3.3.4 - Exhaust gas temperature distribution in the section from the boiler to the chimney outlet 3.3.4.1 - Temperature distribution in precipitators of boilers Electrostatic precipitator Fabric filter 3.3.4.2 - Induced draft fans 3.3.4.3 - The impact of FGD on temperature distribution – waste heat recovery systems 3.3.4.4 - Stack 3.4 - Lowering the air excess number in the boiler 3.4.1 - Reducing the ingress of the false air to the combustion chamber and convection section 3.4.2 - Reduction of leakages in air heaters 3.4.3 - Lowering of air excess number in the furnace References Chapter 4 - Reduction of nitrogen oxide emissions 4.1 - Formation of nitrogen oxides 4.1.1 - Oxidation of fuel nitrogen 4.1.2 - Formation of thermal NO 4.1.3 - Formation of prompt NO 4.1.4 - Formation of N2O 4.1.5 - Oxidation of NO 4.2 - Impact of operating conditions of the furnace on emissions of nitrogen oxides 4.3 - Methods of reduction of nitrogen oxide emissions in PF boilers 4.3.1 - Primary and secondary methods of NOx reduction 4.3.2 - Air staging 4.3.3 - Staging of air and fuel 4.3.3.1 - Reburning 4.3.3.2 - Staging of air and fuel in systems with various concentration of fuel and air mixture 4.3.3.3 - Low NOx burners 4.3.4 - Powered OFA 4.3.4.1 - ROFA system 4.3.4.2 - SJBS – Special Jet Boiler System 4.3.5 - Flue gas recirculation 4.4 - Secondary methods of NOx reduction 4.4.1 - Selective catalytic reduction SCR 4.4.1.1 - General description 4.4.1.2 - Efficiency of the catalyst 4.4.1.3 - Types of SCR installations 4.4.1.4 - Design and operational considerations for introducing the high-dust SCR in existing boilers 4.4.1.5 - RAH SCR 4.4.2 - Selective non-catalytic reduction SNCR 4.4.2.1 - General description 4.4.2.2 - Industrial applications 4.4.2.3 - Ways to improve SNCR efficiency 4.4.2.4 - Dry SNCR 4.4.2.5 - Rich Reagent Injection 4.4.2.6 - Selective Auto Catalytic Reduction (SACR) 4.5 - NOx reduction methods without the use of ammonia or urea 4.5.1.1 - Oxidation of NO to NOy and its removal in FGD 4.5.1.2 - SCONOX technology 4.5.1.3 - SCR of NOx by hydrocarbons (HC-SCR) 4.5.1.4 - NOx Tempering 4.6 - Combined methods of NOx control 4.7 - The future of NOx emission reduction methods References Chapter 5 - Modernization of fuel grinding systems 5.1 - Quality of pulverized coal 5.1.1 - Coal particle size distribution 5.1.2 - Grindability of fuels 5.1.3 - Optimum quality of coal in pulverized-fuel boilers 5.2 - Coal mills 5.3 - Modernizations of coal mills arising from low-NOx combustion 5.3.1 - Improvement of pulverized coal quality 5.3.2 - Increasing the capacity of the milling device 5.3.3 - Modernization to eliminate dust settling in pipelines 5.3.4 - Modernization of mills to differentiate the concentration of pulverized fuel in burners 5.3.5 - Modernization improving the dust distribution 5.4 - Modernization to improve the operating conditions of pulverizers in dynamic states 5.4.1 - Replacement of existing mills 5.4.2 - Classifier as an active control element 5.4.3 - Increased or decreased ventilation of the mills 5.4.4 - Increasing the pressure of grinding elements 5.5 - Modernization of pulverizers to reduce harmful emissions References Chapter 6 - Replacing coal with other fuels 6.1 - Introduction 6.2 - Replacement of coal with natural gas 6.3 - Replacement of coal with blast furnace gas and low-quality syngas 6.4 - Replacement of coal with fuel oil 6.5 - Replacement of hard coal with lignite 6.6 - Modernization for the combustion of various fuels in the same boiler References Chapter 7 - Adaptation of boilers for biomass burning 7.1 - Types of biomass used in the power industry 7.2 - Adaptation of PF boilers for biomass burning 7.2.1 - Combustion of biomass in a separate pre-combustor 7.2.2 - Integration of co-combustion grate for biomass into the bottom of PF boiler furnace 7.2.3 - Grinding and pneumatic transport of biomass to the boiler 7.2.4 - Gasification of biomass and combustion of the product gas as additional fuel 7.2.5 - Combustion of the suspension of fine biomass particles in water or oil 7.2.6 - Systems based on parallel connection on the steam side of the PF boiler and a biomass boiler 7.2.7 - General remarks 7.3 - Complete replacement of coal with biomass 7.3.1 - Replacement of coal with biomass in PF boilers 7.3.2 - Revamping of the PF boiler with a fluidized bed boiler 7.3.3 - Replacement of coal with biomass in grate boilers 7.4 - Adaptation of boilers for wastes burning References Chapter 8 - Harmful phenomena in modernized boilers 8.1 - Hot corrosion on the flue gas side 8.1.1 - High-temperature sulfur-induced corrosion 8.1.2 - High-temperature chlorine-induced corrosion 8.1.2.1 - Thermodynamic stability of oxides and chlorides 8.1.2.2 - Corrosion in the presence of gaseous chlorine compounds 8.1.2.3 - Corrosion due to reactions in solid phase assisted by chlorine compounds 8.1.3 - Corrosion of waterwalls in boiler furnaces 8.1.4 - Methods to prevent the low-NOx corrosion 8.1.4.1 - Modification of the atmosphere in the furnace 8.1.4.2 - Modification of combustion conditions 8.1.4.3 - Boiler furnace atmosphere monitoring 8.1.4.4 - Anticorrosion coatings Hybrid coatings Plasma coatings Supersonic gas-flame spraying (High Velocity Oxygen Fuel HVOF) Weld cladding Electrolytically applied coatings 8.1.4.5 - Evaluation of methods to prevent the low-NOx corrosion 8.1.5 - Corrosion of superheaters 8.1.6 - Methods to prevent the corrosion of superheaters 8.1.6.1 - Additives Aluminosilicates Sulfur and its compounds Protective coatings Selection of tube material Design of the superheater 8.2 - LT corrosion on the flue gas side 8.3 - Threats to boiler reliability resulting from harmful phenomena on the water side 8.4 - Fly-ash erosion 8.4.1 - General description 8.4.2 - Operational modifications to reduce the erosion of convection surfaces of the boiler 8.4.3 - Modernizations increasing resistance to erosion 8.4.4 - Erosion of SCR catalysts 8.5 - Fouling 8.5.1 - Types and properties of ash deposits 8.5.2 - Formation of high temperature (HT) ash deposits 8.5.3 - Formation of medium temperature (MT) ash deposits 8.5.4 - Indices that determine the tendency of fuels to form deposits on convection surfaces 8.6 - Slagging 8.6.1 - The mechanism of the process 8.6.2 - The influence of fuel properties 8.6.3 - The influence of physical parameters of the process 8.6.4 - Slagging indices 8.7 - Deposition of ammonium salts References Chapter 9 - Conversion of an existing boiler to a condensing boiler 9.1 - Condensing technology 9.2 - Industrial applications References Chapter 10 - Increasing flexibility of boiler operation 10.1 - Adaptation of the boiler to work with a load higher than nominal 10.1.1 - Evaporators in natural circulation boilers 10.1.2 - Superheaters 10.1.3 - Mills and furnaces 10.1.4 - Convection surfaces 10.2 - Lowering the minimum boiler load 10.2.1 - Combustion stability 10.2.2 - Steam temperatures 10.2.3 - Preventing dew condensation 10.3 - Frequent start-ups and large and rapid load changes 10.4 - Increasing flexibility of boiler pressure parts 10.4.1 - Damage mechanisms due to cyclical operation in high temperature 10.4.2 - The influence of the design and course of operation on the expected lifetime of boiler components 10.5 - Production flexibility References Chapter 11 - Interactions between emission reduction systems 11.1 - Introduction 11.2 - Interactions between NOx reduction systems and particulate control devices 11.2.1 - Interactions with ESPs 11.2.1.1 - Influence of primary NOx reduction methods on ESP efficiency 11.2.1.2 - Influence of secondary NOx reduction methods on ESP efficiency 11.2.2 - Interactions with fabric filters 11.2.2.1 - Influence of primary NOx reduction methods on FF efficiency 11.2.2.2 - Influence of secondary NOx reduction methods on FF efficiency 11.3 - Interactions between SOx reduction systems and particulate control devices 11.3.1 - Influence of flue gas desulfurization on ESP efficiency 11.3.2 - Influence of flue gas desulfurization on FF efficiency 11.4 - Influence of particulate control devices and NOx reduction systems on wet FGD 11.4.1 - The impact of particulate control on wet FGD 11.4.2 - Influence of primary NOx reduction methods on wet FGD 11.4.3 - Influence of SCR and SNCR on wet FGD References 12 Symbols Index Back Cover