دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ram Prasad (editor)
سری: Environmental and Microbial Biotechnology 4
ISBN (شابک) : 9811554986, 9789811554988
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 501
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Environmental Pollution and Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آلودگی محیط زیست و اصلاح نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفته ترین فرآیندهای اصلاح محیطی را ارائه می دهد. حفاظت و مدیریت محیط زیست یک نگرانی جهانی به ویژه در زمینه مناطق صنعتی است. در طول سالها، چندین روش متداول و مهندسی بیعیبزدایی فیزیکوشیمیایی در اصلاح سایتهای آلوده استفاده شده است. با این حال، این روش ها گران هستند و کارایی محدودی دارند. این کتاب با تکیه بر تحقیقات و نمونههایی از سراسر جهان، مروری جامع و بینشهایی در مورد فناوریهای سبز و جایگزینهای اصلاح پایدار ارائه میدهد. این مقاله اهمیت نوظهور نانوتکنولوژی، شیمی و حسگرهای زیستی، گونههای شاخص، اصلاح ترکیبات آلی مبتنی بر میکروب، و روشهای اصلاح خارج از محل را مورد بحث قرار میدهد. با توجه به نیاز روزافزون جهانی به یک مرور کلی از اصلاح زیست محیطی سایت های آلوده، این امر برای معلمان، محققان، دانشمندان، ظرفیت سازان و سیاست گذاران جذاب خواهد بود. همچنین به عنوان مطالب خواندنی اضافی برای دانشجویان کارشناسی و کارشناسی ارشد بیوتکنولوژی و علوم محیطی عمل می کند.
This book presents state-of-the-art environmental remediation processes. Environmental protection and management is a global concern, especially in the context of industrial regions. Over the years, several conventional, engineering-based physicochemical decontamination methods have used in the remediation of polluted sites. However, these methods are expensive and have limited efficiency. Drawing on research and examples from around the world, this book offers a comprehensive review of and insights into green technologies and sustainable remediation alternatives. It discusses the emerging importance of nanotechnology, chemo and biosensors, indicator species, microbe-based remediation of organic compounds, and ex-situ remediation methods. Addressing the growing global need for a holistic overview of the environmental remediation of polluted sites, it will appeal to teachers, researchers, scientists, capacity builders, and policymakers. It also serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.
Contents Editor and Contributors 1: Nanotechnology in Agriculture, the Food Sector, and Remediation: Prospects, Relations, and Constraints 1.1 Introduction 1.2 What Is Nanotechnology? 1.3 Nanotechnology in Agriculture and the Food Industry 1.4 Nanoremediation 1.5 Ecotoxicity of Nanomaterials 1.6 Conclusion References 2: Nanotechnology-Based Treatment Systems for Arsenic Sequestration in Groundwater: Contamination, Challenges and Future Scope... 2.1 Introduction 2.2 Arsenic Pollution in Groundwater and Its Health Consequences 2.3 Sources of Arsenic in Subsurface Environment 2.3.1 Causes of Its Release in Aquifer Systems 2.3.1.1 Reductive Dissolution 2.3.1.2 Alkali Desorption 2.3.1.3 Geothermal Trigger 2.4 Conventional Treatment Methods and Their Limitations 2.4.1 Coagulation/Flocculation 2.4.2 Ion-Exchange Resins 2.4.3 Oxidation and Adsorption 2.4.4 Membrane Processes 2.5 Adoption of Technology at Rural Scale 2.5.1 Domestic or Household Treatment Systems 2.5.2 Community-Based Treatment Systems 2.6 Scope of Nanotechnology-Based Treatment Systems 2.7 Nanoadsorbents for Arsenic Remediation 2.7.1 Iron-Based Nanomaterials 2.7.2 Ti-, Al-, Zr-, Ce-, Zn- and Cu-Based Nanomaterials 2.8 Scope of Future Nanoadsorbent Development 2.9 Subsurface Sequestration of Arsenic 2.9.1 Technology Advantages 2.9.2 Methods of Treatment 2.9.2.1 Permeable Reactive Barriers (PRBs) 2.9.2.2 In Situ Chemical Treatment 2.9.2.3 Concern Associated to Technology 2.9.2.4 Scope for Future Studies 2.10 Lack of Studies at Laboratory Scale 2.10.1 Studies Representing Real-World Conditions 2.10.2 Cost Evaluation of Nanomaterials Production 2.10.3 Fabrication of Columns 2.11 Conclusions References 3: Development of Polyhydroxyalkanoate (PHA) and Its Copolymers as a Possible ``Cure´´ for the Plastic Pollution 3.1 Introduction: Polyhydroxyalkanoate (PHA) as a Possible Substitute for Petroleum-Based Plastics (PBP) 3.2 Biosynthesis of PHA 3.2.1 PHA Synthase 3.2.2 Potential Carbon Sources for PHA Biosynthesis 3.2.3 Metabolic Pathways for PHA Biosynthesis 3.2.3.1 Naturally Occurring PHA Biosynthetic Pathways 3.2.3.2 Genetically Engineered Pathways for PHA Biosynthesis 3.3 Material Properties of PHA 3.4 Remarks and Outlook References 4: Advanced Technologies for Ecological Reconstruction and Bioremediation of Degraded Land 4.1 Introduction 4.2 Natural Bioresources Involved in Bioremediation 4.2.1 Enzymatic Soil Activity 4.2.2 The Importance of Soil Microorganisms for Biological Depollution 4.2.3 Nature of Microorganisms in the Soil 4.2.4 Types of Microorganisms From Soil 4.2.5 The Distribution of Microorganisms in the Soil 4.2.6 Factors that Determine the Distribution of Microorganisms in the Soil 4.3 Monitoring Soil Pollution 4.3.1 Soil Characteristics 4.3.2 Soil Components 4.3.2.1 Inorganic Soil Substance 4.3.2.2 The Organic Substance From Soil: Biomolecules 4.3.2.3 Soil Water 4.3.2.4 Soil Atmosphere 4.4 Soil Degradation 4.4.1 The Erosion 4.4.2 Compaction of Soil 4.4.3 Acidification of Soil 4.4.4 Heavy Metals in the Soil 4.4.5 The Bioremediation 4.4.5.1 Advantages of Bioremediation 4.5 Technologies Involved in Bioremediation 4.5.1 Biorestoration 4.5.2 Bioremediation with Microbial Communities 4.5.3 The Importance of Microorganisms with Depollution Potential and High Bioremediation Potential 4.5.4 The Role of Microorganisms in Fixing or Mobilizing Metals in the Soil 4.5.5 In Situ Bioremediation of Soils Contaminated with Heavy Metals 4.6 The Role of Plants in Bioremediation 4.6.1 The Importance of Phytoremediation of Soils Contaminated with Heavy Metals 4.7 Biomonitoring Soil Pollution with Heavy Metals 4.8 Bioindicators for Terrestrial Environments 4.9 Research on the Possibilities of Using Plants and Microorganisms for the Biological Extraction of Heavy Metals From Contam... 4.9.1 Removing Heavy Metals From Polluted and Leached Soils Contaminated with the Help of Cyanobacteria 4.10 Ecological Restoration 4.10.1 Biological Recultivation of Degraded Lands 4.10.1.1 Treatments in Ecological Reconstruction Technologies of Degraded or Industrially Polluted Sites 4.10.2 Plants Used in Recultivation of Degraded Lands 4.10.2.1 Works to Improve the Conditions for the Installation and Development of Forest Vegetation 4.11 Biological Reclamation of the Mining Waste Deposits From the Exploitation of Nonferrous and Precious Metal Ores 4.11.1 Chemical and Physical Treatments 4.11.2 Models of Ecological Rehabilitation and Recultivation of Polluted and Degraded Soils From Technical Waste Dumps from Ir... 4.12 Technogenic Soils from Residues from Lead and Zinc Mines 4.13 Conclusions and Recommendations References 5: The Recent Strategies Employed in Chemical Analysis of Contaminated Waters, Sediments and Soils as a Part of the Remediatio... 5.1 Introduction 5.2 The Role of Extraction in Environmental Analysis 5.3 The Types of Extraction Techniques 5.3.1 Liquid-Liquid Extraction 5.3.2 Solid-Liquid Extraction 5.4 Surfactants of Biological Origin as Eco-friendly Extractants for Environmental Pollutants Removal 5.4.1 Rhamnolipids 5.4.2 Sophorolipids 5.4.3 Lipopeptides 5.4.4 Saponins 5.4.4.1 Quillaja Saponins 5.5 Experimental: A Solid-Liquid Extraction with Synthetic and Biological Surfactants for the Removal of Cu, Pb, Ni and Zn fro... 5.6 Conclusions References 6: Fluoride Remediation Using Membrane Processes 6.1 Introduction 6.2 Source of Fluoride in Atmosphere 6.3 Effects of Fluoride on Life Forms 6.4 Available Technologies for Removing Fluoride 6.4.1 Adsorption 6.4.2 Membrane Process 6.4.2.1 Organic Membrane 6.4.2.2 Inorganic Membrane 6.4.2.3 Hybrid Membrane 6.5 Membrane-Based Techniques for Fluoride Removal 6.6 Conclusion References 7: A Two-Stage Constructed Wetland Design Integrating Artificial Aeration and Sludge Mineralization for Municipal Wastewater T... 7.1 Introduction 7.2 Description of the Constructed Wetland Facility 7.3 Results and Discussion 7.4 Conclusions References 8: Persistent Organic Pollutants (POPs): Sources, Types, Impacts, and Their Remediation 8.1 Introduction: Persistent Organic Pollutants (POPs) 8.2 Sources of POPs 8.2.1 Intentionally Produced POPs 8.2.2 Non-intentionally Produced POPs 8.3 Environmental Impacts of POPs 8.4 Health Impacts of POPs 8.5 Types of Persistent Organic Pollutants 8.5.1 Polychlorinated Naphthalenes (PCNs) 8.5.2 Polybrominated Diphenyl Ethers (PBDEs) 8.5.3 Polycyclic Aromatic Hydrocarbons (PAHs) 8.5.4 Dechlorane Plus 8.5.5 Polychlorinated Biphenyls (PCBs) 8.5.6 Organochlorine Pesticides (OCPs) 8.6 Remediation of Persistent Organic Pollutants 8.6.1 Bioremediation 8.6.1.1 In Situ Bioremediation 8.6.1.2 Ex Situ Bioremediation 8.6.1.3 Removal of Persistent Organic Pollutants 8.6.2 Adsorption Process 8.6.3 Membrane Technology 8.6.3.1 Reverse Osmosis 8.6.3.2 Microfiltration (MF) 8.6.3.3 Ultrafiltration (UF) 8.6.3.4 Nanofiltration (NF) 8.6.4 Advanced Oxidation Processes (AOPs) 8.6.4.1 Chemical-Based AOPs 8.6.4.2 UV-Based AOPs 8.6.4.3 Sonochemical AOPs 8.6.4.4 Electrochemical AOPs 8.7 Conclusion References 9: Emerging Microfiber Pollution and Its Remediation 9.1 Introduction 9.2 Sources of Microfiber Pollution 9.3 Possible Pathways of Microfiber Entry into the Environment 9.4 Microfiber Pollution and Its Hazardous Effects 9.5 Recent Remediation Strategies 9.6 Conclusion References 10: Environment Remediation Tools: Chemosensors and Biosensors 10.1 Introduction 10.2 Chemosensors 10.2.1 Fluorescence-Based Chemosensors 10.2.2 Electrochemical Chemosensors 10.2.3 Colorimetric Chemosensors 10.2.4 Surface Plasmon Resonance (SPR) Chemosensor 10.2.4.1 SPR Integrated Optical Fiber Approach 10.3 Biosensors 10.3.1 Fluorescent Label-Based Biosensor 10.3.1.1 Fiber Optic-Based Biosensors 10.3.2 Surface Plasmon Resonance Biosensors 10.3.2.1 Integrated Surface Plasmon Resonance Biosensors 10.3.3 Piezoelectric Biosensors 10.3.3.1 Piezoelectric Quartz Crystal Biosensors 10.3.3.2 Piezoelectric Cantilever Biosensors 10.3.4 Electrochemical Biosensors 10.3.4.1 Amperometric/Voltammetric Biosensors 10.3.4.2 Impedimetric/Conductometric Biosensors 10.3.5 Biochemical Biosensors 10.3.5.1 Immunosensors 10.4 Conclusion and Future Prospects References 11: Adsorptive Chromatography: A Sustainable Strategy for Treatment of Food and Pharmaceutical Industrial Effluents 11.1 Introduction 11.1.1 Challenges for Effluent Treatment of Food and Pharmaceuticals Industries 11.2 Techniques for Effluent Treatment from Food and Pharmaceutical Industries 11.2.1 Horizontal Subsurface Flow Constructed Wetland (HSFCW) 11.2.2 Upflow Anaerobic Sludge Blanket Reactor (UASB) 11.2.3 Membrane Bioreactors (MB) 11.2.4 Trickling Filter (TF) 11.2.5 Bubble Column Reactors (BCRs) 11.2.6 Airlift Reactors (ALRs) 11.2.7 Fluidized Bed Reactors (FBRs) 11.2.8 Packed Bed Bioreactors (PBRs) 11.2.9 Adsorptive Chromatography (AC) 11.3 Modes of Adsorptive Chromatography for Treatment of Effluents and Discharge 11.4 Dovetailing of Unit Operations for Sustainable Technique 11.5 Conclusions and Future Prospects References 12: Remediation of Heavy Metals Through Genetically Engineered Microorganism 12.1 Introduction 12.2 Heavy Metals 12.2.1 Traditional Methods for Treating Environments Contaminated by Heavy Metals 12.3 Microbial Diversity and Bioremediation 12.4 Utilization of the Natural Biodiversity 12.4.1 Microbial Remediation of Heavy Metals Polluted Soils 12.5 Unique Mechanisms in Bacteria: Natural Development of Resistance Towards Toxic Elements 12.5.1 Microorganisms as Biosorbents of Heavy Metals 12.5.2 Biosorbent Material 12.5.3 The Choice of Metal for Biosorption Process 12.5.4 Biosorption Mechanisms 12.5.4.1 Transport Across Cell Membranes 12.5.4.2 Ion Exchange 12.5.4.3 Complexation 12.5.4.4 Precipitation 12.5.4.5 Physical Adsorption 12.5.4.6 Siderophores 12.5.4.7 Biosurfactants 12.5.4.8 Oxidation-Reduction (Redox) 12.5.4.9 Biomethylation 12.5.4.10 Metal-Binding Cysteine-Rich Peptides Metallothioneins (MTs) Glutathione (GSH) Natural Phytochelatins (PCs) and Synthetic Phytochelatin (EC20) 12.5.4.11 The ``Cell-Ssurface Display´´ System 12.6 Factors Affecting Biosorption 12.7 Diversity of Metal-Resistant Genes and Biotechniques in Metal-Resistant Bacteria for Bioremediation 12.7.1 Chromium 12.7.2 Copper 12.7.3 Lead 12.7.4 Mercury 12.7.5 Nickel 12.8 Discovery of Novel Metal-Resistant Genes Involved in Bioremediation 12.9 Genetically Engineered Microorganisms 12.10 Manipulation of Bacterial Genetic System for Enhanced Bioremediation 12.10.1 Engineering Single Gene or Gene Cluster/Operon 12.10.2 Modification of Intrinsic Genes 12.10.3 Pathway Switching 12.11 Biodegradation of Heavy Metals 12.12 Risk Mitigation in Genetically Modified Bacteria 12.12.1 Monitoring of Recombinant Strains 12.12.2 Horizontal Transfer of Recombinant Genes to Other Microorganisms 12.12.3 Use of Defective Transposons 12.12.4 Removal of Antibiotic Resistance Genes 12.12.5 Suicide Mechanisms Preventing Escape of Recombinant Bacteria 12.12.6 Suicide Mechanisms Preventing Horizontal Gene Transfer 12.13 Future Directions References 13: Heavy Metal Removal Processes by Sulfate-Reducing Bacteria 13.1 Introduction 13.2 Heavy Metal Removal 13.3 Main Mechanisms of Biological Removal 13.3.1 Biosorption and Bioaccumulation 13.3.2 Precipitation 13.3.3 Microbial Reduction of Metallic Ions 13.4 Sulfate-Reducing Bacteria 13.4.1 Classification and Phylogeny 13.4.2 Biotechnological Implications 13.5 Removing of Heavy Metal by Desulfovibrio 13.5.1 Desulfovibrio alaskensis as a Model of Removing of Metals References 14: Biological Implications of Dioxins/Furans Bioaccumulation in Ecosystems 14.1 Introduction 14.2 Nature of Dioxins and Furans 14.3 Sources and Exposure of Dioxins/Furans 14.3.1 Incineration 14.3.2 Combustion 14.3.3 Industrial 14.3.4 Reservoir 14.4 Dioxins/Furans in the Global Environment 14.4.1 Dioxin and Furan Contamination in Soil 14.4.2 Dioxin and Furan Contamination in Water 14.4.3 Dioxin and Furan Contamination in the Air 14.5 Regulations 14.6 Bioaccumulation of Dioxins/Furans 14.6.1 Terrestrial Ecosystem 14.6.2 Aquatic Ecosystem 14.7 Health Effects in Humans 14.7.1 Cancer 14.7.2 Respiratory Disorders 14.7.3 Cardiovascular Disorders 14.7.4 Neurological Disorders 14.7.5 Reproductive Disorders 14.8 Future Considerations and Conclusions 14.8.1 Better Understanding and Identification of Sources 14.8.2 Understanding the Mechanism of Action 14.8.3 Development of New Techniques to Identify Contamination 14.8.4 Development of Toxicological and Epidemiological Studies References 15: The Role of Microorganisms in Remediation of Environmental Contaminants 15.1 Introduction 15.2 Conventional Methods of Remediation 15.2.1 Mechanical Separation 15.2.2 Extraction and Storage 15.2.3 Soil Cover/Insulation 15.2.4 Adsorption 15.2.5 Membrane Filtration 15.2.6 Electrochemical Method 15.3 Bioremediation as a Sustainable Method for Remediation of Contaminants 15.3.1 In Situ Bioremediation 15.3.2 Ex Situ Bioremediation 15.4 Microbes Involved in Bioremediation 15.4.1 Bacteria 15.4.2 Fungi 15.4.3 Protozoa and Algae 15.5 Microbial Enzymes Involved in Bioremediation 15.6 Molecular and Omnics Approaches Used for the Modification of Microbes to Increase Bioremediation 15.6.1 Molecular Biology Tools in Advancement of Bioremediation of Pollutants 15.6.1.1 16S rRNA Technique and Bioremediation 15.6.2 Omnics-Based Advancements in Bioremediation of Pollutants 15.6.2.1 Metagenomics, Metatranscriptomics, Proteomics and Bioremediation 15.6.2.2 Metabolomics and Bioremediation 15.7 Conclusion References 16: Causes, Effects and Sustainable Approaches to Remediate Contaminated Soil 16.1 Introduction 16.1.1 Point-Source Pollution 16.1.2 Diffuse-Source Pollution 16.2 Sources of Soil Pollution 16.2.1 Natural Sources 16.2.2 Anthropogenic Sources 16.2.2.1 Domestic and Municipal Wastes 16.2.2.2 Transportation and Urban Infrastructure 16.2.2.3 Industrial and Mining Wastes 16.2.2.4 Agriculture 16.2.2.5 Miscellaneous Sources 16.3 Major Pollutants in Soil 16.3.1 Inorganic Pollutants 16.3.2 Organic Pollutants 16.4 Factors Affecting Toxicity of Organic and Inorganic Pollutants in Soil 16.4.1 Soil Texture and Mineralogy 16.4.2 The pH and Electrical Conductivity 16.4.2.1 Changes in Surface Charge 16.4.2.2 Competition for Adsorption Sites 16.4.2.3 Hydrolysis of Inorganic/Organic Species in Solution 16.4.2.4 Dissolution of Inorganic/Organic Complexing Anions 16.4.3 Soil Organic Matter 16.4.4 Cation Exchange Capacity 16.4.5 Oxidation-Reduction Potential 16.5 Effects on Environment and Socioeconomic Segment 16.5.1 Effects on Soil 16.5.2 Harmful Effects of Pollutants on Plants 16.5.2.1 Changes in Plant Community Structure Pattern: Case Studies 16.5.2.2 Crop Loss Due to Soil Pollution 16.5.3 Effects on Animals and Human Beings 16.6 Advanced Technologies and Cost Incurred in Management of Wastes 16.6.1 Conventional and Advanced Management Techniques 16.6.2 Bioremediation of Contaminated Sites 16.6.2.1 In Situ Bioremediation 16.6.2.2 Ex Situ Bioremediation 16.6.2.3 Bioremediation Using Microbes, Plants and Their Association 16.7 Future Prospects 16.8 Conclusions References