دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Vicki H. Grassian
سری:
ISBN (شابک) : 157444462X, 9781574444629
ناشر: CRC Press
سال نشر: 2005
تعداد صفحات: 672
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Environmental Catalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاتالیز محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مطالعه واسطهای محیطی و کاتالیز محیطی برای یافتن راهحلهای مؤثرتر برای آلودگی هوا و درک چگونگی تأثیر آلودگی بر محیط طبیعی، مرکزی است. Environmental Catalysis که شامل مفاهیم، تکنیکها و روشها میشود، ترکیبی از تئوری، محاسبات، تجزیه و تحلیل و سنتز را برای پشتیبانی از آخرین کاربردها در بیوکاتالیز، شیمی سبز، اصلاح محیطزیست و درک ما از تعامل آلایندهها با سیستمهای طبیعی ارائه میکند. این کتاب بر چندین جنبه از کاتالیز محیطی تمرکز دارد. کاتالیز سطحی ذرات معلق در هوا - از جمله یخ، گازهای ردیابی اتمسفر، نانوذرات دوده آئروسل شده و سطوح گرد و غبار معدنی - و همچنین ذرات در تماس با آب زیرزمینی و نقش آنها در جذب سطحی، کاتالیز سطحی، هیدرولیز، انحلال، بارش، اکسیداسیون و ازن تجزیه بررسی می شود. این کار با ارائه کاتالیزور به عنوان فناوری کلیدی برای تصفیه گازهای گلخانه ای و کاهش محصولات جانبی زباله ادامه می یابد. نویسندگان نظریه مبدلهای کاتالیزوری را بررسی کرده و در مورد اثربخشی چندین کاتالیزور، از جمله زئولیتها و نانوذرات، در درمان انتشار، هیدروکربنهای معطر و عوامل جنگ شیمیایی بحث میکنند. آنها همچنین استفاده از کاتالیزور زیستی را در اصلاح زیست محیطی و فرآیندهای صنعتی، به ویژه در تولید سوخت های حمل و نقل، مواد شیمیایی خوب و داروها بررسی می کنند. سپس نویسندگان توضیح می دهند که چگونه آنزیم ها می توانند مواد آلی و فلزات کلردار را حذف کنند و چگونه میکروب ها می توانند مواد شیمیایی سمی را از آب های زیرزمینی متابولیزه کنند. در نهایت، آنها اصول شیمی سبز، از جمله استفاده از حلال های خوش خیم محیطی، کاتالیزورهای دو فازی، و سایر حلال های جایگزین برای بازیابی و بازیافت کاتالیزورهای مبتنی بر فلزات سنگین را مورد بحث قرار می دهند. با افزایش آلودگی آب های زیرزمینی، افزایش ذرات در جو، و افزایش نیاز به حذف آلایندهها از منابع صنعتی و خودرویی، Environmental Catalysis به مسائلی میپردازد که در چالشهای زیستمحیطی کنونی و آینده که ما با آن روبرو هستیم، بسیار مفید خواهند بود.
The study of environmental interfaces and environmental catalysis is central to finding more effective solutions to air pollution and in understanding of how pollution impacts the natural environment. Encompassing concepts, techniques, and methods, Environmental Catalysis provides a mix of theory, computation, analysis, and synthesis to support the latest applications in biocatalysis, green chemistry, environmental remediation and our understanding of the interaction of pollutants with natural systems. The book focuses on several aspects of environmental catalysis. Surface catalysis of airborne particles - including ice, trace atmospheric gases, aerosolized soot nanoparticles, and mineral dust surfaces - as well as particles in contact with ground water and their role in surface adsorption, surface catalysis, hydrolysis, dissolution, precipitation, oxidation and ozone decomposition is explored. It continues by presenting catalysis as the key technology for treating emissions and reducing waste by-products. The authors review the theory behind catalytic converters and discuss the effectiveness of several catalysts, including zeolites and nanoparticles, in treating emissions, aromatic hydrocarbons, and chemical warfare agents. They also survey the use of biocatalysis in environmental remediation, and industrial processes, particularly in the production of transportation fuels, fine chemicals, and pharmaceuticals. Then the authors explain how enzymes can remove chlorinated organics and metals and how microbes can metabolize toxic chemicals from groundwater. Lastly, they discuss the principles of green chemistry, including the use of environmentally benign solvents, biphasic catalysts, and other alternative solvents to recover and recycle catalysts based on heavy metals.With increasing ground water pollution, increasing particulates in the atmosphere, and the increasing need to remove pollutants from industrial and automotive sources, Environmental Catalysis addresses issues that will be instrumental in current and future environmental challenges we face.
dk3252fm.pdf......Page 1
ENVIRONMENTAL CATALYSIS......Page 2
Preface......Page 4
OVERVIEW OF SECTION I — ENVIRONMENTAL CATALYSIS IN AIR, WATER, AND SOIL......Page 5
OVERVIEW OF SECTION II — ENVIRONMENTAL CATALYSIS IN REMEDIATION......Page 6
OVERVIEW OF SECTION III — ENVIRONMENTAL CATALYSIS IN GREEN CHEMICAL PROCESSING......Page 7
FUTURE OUTLOOK......Page 8
Editor......Page 9
Contributors......Page 10
Table of Contents......Page 13
Section I: Environmental Catalysis in Air, Water, and Soil......Page 16
Table of Contents......Page 0
1.1 INTRODUCTION......Page 17
1.2 SURFACE FUNCTIONAL GROUPS AND SURFACE COMPLEXATION......Page 19
1.3 MACROSCOPIC ASSESSMENT OF METAL AND OXYANION SORPTION......Page 23
1.4 MOLECULAR SCALE INVESTIGATIONS ON METAL AND OXYANION SORPTION......Page 28
1.5 SURFACE PRECIPITATION OF METALS......Page 35
1.6.1 RATE-LIMITING STEPS AND TIME SCALES......Page 39
1.6.2 RESIDENCE TIME EFFECTS ON METAL AND OXYANION SORPTION......Page 40
1.6.3 KINETICS OF METAL HYDROXIDE SURFACE PRECIPITATION/DISSOLUTION......Page 44
REFERENCES......Page 46
2.1 INTRODUCTION......Page 51
2.3 MECHANISM AND KINETICS OF ET IN HOMOGENEOUS SOLUTIONS......Page 52
2.3.1 MECHANISM AND RATE OF OUTER-SPHERE REACTIONS......Page 54
2.3.2 MECHANISM AND RATE OF INNER-SPHERE REACTIONS......Page 56
2.4 INFLUENCE OF SURFACES ON REACTION MECHANISMS AND REACTION RATES......Page 58
2.4.1 CONCENTRATION OF THE REACTANTS AND LOWERING THE ACTIVATION ENERGY......Page 59
2.4.2 FUNDAMENTALLY DIFFERENT REACTION MECHANISM......Page 60
2.5 SPECIFIC EXAMPLES......Page 61
2.5.1.1 Oxygenation of Sorbed Metal Species......Page 62
2.5.1.2 Reactions Involving Sorbed Fe(II) as Electron Donor......Page 64
2.5.1.3 Oxidative Coupling of Aromatic Compounds......Page 67
2.5.2 SURFACE PRECIPITATES......Page 69
2.6 CONCLUSIONS......Page 71
REFERENCES......Page 72
3.1 INTRODUCTION......Page 75
3.2 THERMODYNAMIC DRIVING FORCES......Page 77
3.3 RATES OF HOMOGENEOUS OXIDATION......Page 79
3.4.1 MINERAL SURFACES......Page 81
3.5 DISSOLUTION RATES......Page 82
3.5.1 PROTON-PROMOTED......Page 84
3.5.3 REDUCTIVE......Page 85
3.6 MOLECULAR ENVIRONMENTAL CHEMISTRY......Page 86
3.6.1 INFRARED (IR) SPECTROSCOPY......Page 87
3.6.2 ATOMIC FORCE MICROSCOPY (AFM)......Page 89
3.6.3 X-RAY ABSORPTION SPECTROSCOPY (XAS)......Page 90
ACKNOWLEDGMENTS......Page 91
REFERENCES......Page 92
CONTENTS......Page 96
4.1.1 SURFACE STUDIES IN THE UV–VIS REGION: SECOND HARMONIC GENERATION......Page 97
4.1.2 SHG IN THE ABSENCE OF ADSORBATES......Page 98
4.1.3 PROBING ADSORBATES WITH SHG......Page 99
4.1.4 SURFACE STUDIES IN THE IR REGION: SUM FREQUENCY GENERATION......Page 100
4.1.5 EXPERIMENTAL CONSIDERATIONS......Page 101
4.2 GAS–LIQUID INTERFACES......Page 102
4.2.1 NEAT WATER SURFACES......Page 103
4.2.2 SURFACES OF AQUEOUS ELECTROLYTE SOLUTIONS......Page 104
4.2.3 SURFACE POTENTIAL AND SURFACE PKa......Page 109
4.2.4 ORGANIC SPECIES AT AQUEOUS SURFACES......Page 112
4.3 BURIED AQUEOUS INTERFACES......Page 114
4.3.1 AQUEOUS–LIQUID INTERFACES......Page 115
4.3.2.1 Inorganic Solids under Aqueous Solution......Page 116
4.3.2.2 Organic Solids under Aqueous Solution......Page 121
4.4.1 MINERAL OXIDES AND SALTS......Page 122
4.4.2 ICE......Page 126
4.4.4 HIGH-PRESSURE CO ADSORPTION AND OXIDATION......Page 127
4.5.1 SOLVATION AT INTERFACES......Page 129
4.5.2 DYNAMICS......Page 131
4.5.3 COLLOIDS......Page 132
4.5.4 CHIRAL SURFACES......Page 133
4.6 OUTLOOK......Page 134
REFERENCES......Page 135
5.1 INTRODUCTION — MINERAL DUST AEROSOL: A SOURCE OF POTENTIALLY CATALYTIC REACTIVE SURFACES IN THE ATMOSPHERE......Page 142
5.2 POSSIBLE TYPES OF SURFACE REACTIONS ON MINERAL DUST......Page 144
5.3 THE ROLE OF MODELING ANALYSIS, LABORATORY STUDIES, AND FIELD MEASUREMENTS IN UNDERSTANDING SURFACE REACTIONS IN THE ATMOSPHERE......Page 146
5.4. CATALYTIC DESTRUCTION OF OZONE ON MINERAL DUST AEROSOL......Page 148
5.4.3 LABORATORY STUDIES......Page 149
5.5 TROPOSPHERIC FORMATION OF HONO AND HNO3: CATALYTIC HYDROLYSIS OF N2O3, N2O4, AND N2O5 ON MINERAL DUST AEROSOL......Page 157
5.5.1 FIELD STUDIES......Page 158
5.5.2 MODELING STUDIES......Page 159
5.5.3 LABORATORY STUDIES......Page 160
5.6 CONCLUSIONS CONCERNING HETEROGENEOUS REACTIONS ON MINERAL DUST AEROSOL IN THE TROPOSPHERE: FUTURE STUDIES AND FURTHER IMPLICATIONS......Page 162
REFERENCES......Page 165
6.1 INTRODUCTION......Page 170
6.2.1 REACTION CHAMBER......Page 171
6.2.2 DETERMINATION OF SURFACE COVERAGE......Page 172
6.2.3 FTIR-RAS......Page 173
6.3.1.1 Background......Page 175
6.3.1.2 Results and Discussion......Page 176
6.3.1.3 Atmospheric Implications......Page 180
6.3.2.1 Background......Page 182
6.3.2.2 Results and Discussion......Page 183
6.3.2.3 Atmospheric Implications......Page 185
REFERENCES......Page 186
7.1 INTRODUCTION......Page 189
7.2.1 OVERVIEW......Page 190
7.2.2 CREATING A STREAM OF SIZE-SELECTED PARTICLES......Page 191
7.2.3.1 Tandem-DMA: Surface Kinetics and Mechanisms......Page 193
7.2.3.2 Photoelectron Spectroscopy......Page 194
7.2.3.3 Transmission Electron Microscopy......Page 195
7.3.1 ETHENE SOOT......Page 197
7.3.2 DIESEL SOOT......Page 200
7.4 FUTURE PROSPECTS......Page 203
ACKNOWLEDGMENTS......Page 204
REFERENCES......Page 205
Section II: Environmental Catalysis in Remediation......Page 207
8.1 INTRODUCTION......Page 208
8.2.2 SOURCES OF NOx......Page 209
8.2.2.1.2 Prompt NOx......Page 210
8.3.1 COMBUSTION CONTROL......Page 211
8.3.2 FLUE GAS TREATMENTS......Page 213
8.4.1 SCR REACTIONS......Page 214
8.4.2 TYPE OF CATALYST......Page 215
8.4.4 THE POSITIONING OF THE SCR REACTOR......Page 217
8.4.4.3 Tail-End Configuration......Page 218
8.4.5 DIFFICULTIES ASSOCIATED WITH THE SYSTEM......Page 219
8.4.6 CURRENT DEVELOPMENTS......Page 220
REFERENCES......Page 221
9.1 INTRODUCTION......Page 222
9.2.1 NO ADSORPTION AND REACTIONS......Page 223
9.2.1.1 NO Chemistry on Rh Surfaces......Page 224
9.2.1.2 NO Chemistry on Pt Surfaces......Page 228
9.2.2 ADSORPTION AND REACTIONS OF N2O AND NO2 ON METALS......Page 230
9.3 ADSORPTION AND REACTION OF NOx MOLECULES ON OXIDE SURFACES......Page 231
9.3.1 NO CHEMISTRY ON OXIDE SURFACES......Page 232
9.3.2 N2O CHEMISTRY ON OXIDE SURFACES......Page 235
9.3.3 NO2 CHEMISTRY ON OXIDE SURFACES......Page 236
ACKNOWLEDGMENTS......Page 240
REFERENCES......Page 241
10.1 WHY NOx CATALYSIS?......Page 244
10.2 GAS-PHASE NOx THERMODYNAMICS AND KINETICS......Page 245
10.3 ELECTRONIC STRUCTURE SIMULATIONS FOR NOx CATALYSIS......Page 249
10.4 REACTIONS ON METAL OXIDES: NOx ADSORPTION......Page 253
10.5 REACTIONS ON METAL SURFACES: NO OXIDATION......Page 261
10.6 REACTIONS ON METAL-EXCHANGED ZEOLITES: NO DECOMPOSITION......Page 268
10.7 FINAL OBSERVATIONS......Page 274
REFERENCE......Page 275
11.1 INTRODUCTION......Page 279
11.2 REDUCTION IN THE EMISSIONS OF NITROGEN OXIDES AND VOLATILE ORGANIC COMPOUNDS......Page 282
11.2.1 DIRECT DECOMPOSITION OF NITROGEN OXIDES......Page 283
11.2.2 SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES......Page 284
11.2.2.1 Copper- and Cobalt-Exchanged Zeolites for SCR-HC......Page 285
11.2.2.2 Iron-Exchanged Zeolites for SCR-NH3......Page 287
11.3 ENVIRONMENTALLY BENIGN SYNTHESIS AND MANUFACTURING USING ZEOLITES......Page 289
11.3.1 THERMAL AND PHOTOOXIDATION OF ALKENES AND AROMATICS IN CATION-EXCHANGED ZEOLITES......Page 290
11.3.2 KINETICS OF THE PHOTO AND THERMAL CYCLOHEXANE OXIDATION REACTION IN BAY AND NAY......Page 292
REFERENCES......Page 294
12.1 INTRODUCTION......Page 297
12.2 COMPUTATIONAL QUANTUM CHEMICAL METHODS......Page 298
12.3 SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES......Page 302
12.4.1 THE NATURE OF THE ACTIVE SITE......Page 303
12.4.2 CLUSTER MODELS OF ZEOLITE ACTIVE SITES......Page 305
12.4.3 INFLUENCE OF METAL–ZEOLITE COORDINATION ENVIRONMENT......Page 307
12.4.4 REACTION PATHWAY ANALYSIS......Page 310
12.4.5 DEALING WITH ELECTRON SPIN......Page 312
12.5 CONCLUSIONS AND FUTURE DIRECTIONS......Page 313
REFERENCES......Page 314
13.1 INTRODUCTION......Page 317
13.2.1 SAMPLE COMPOSITION......Page 319
13.2.3 ANALYSIS......Page 320
13.3.1 EARLY EVENTS ON THE SEMICONDUCTOR PARTICLE......Page 322
13.3.2.1 Common Oxidative Reactions......Page 325
13.3.2.2 Less Common Reactions: Reductive Chemistry......Page 328
13.3.3 RING OPENING OF AROMATIC SUBSTRATES......Page 330
13.4 THE NATURE OF THE PRIMARY OXIDIZING AGENT......Page 334
13.5.1 ATRAZINE AND SIMILAR TRIAZINE-CONTAINING COMPOUNDS......Page 340
13.5.2 SULFONYLUREA AND UREA HERBICIDES......Page 345
13.5.3 CARBAMATE AND AMIDE HERBICIDES AND PESTICIDES......Page 347
13.5.4 AMIDE-BASED AGRICULTURAL CHEMICALS......Page 348
13.5.5 SULFUR-CONTAINING ANALOGS......Page 349
13.6 SUMMARY AND OUTLOOK......Page 350
REFERENCES AND NOTES......Page 351
14.1 INTRODUCTION......Page 357
14.2 A BRIEF INTRODUCTION TO SSNMR CONCEPTS......Page 359
14.3 NMR METHODS......Page 361
14.4 SAMPLE PREPARATION......Page 362
14.5 SSNMR STUDIES OF SURFACE SPECIES AND PHOTOOXIDATION REACTIONS ON TiO2......Page 363
14.5.1 ADSORPTION AND REACTIVITY OF ETHANOL ON TIO2......Page 364
14.5.2 THE EFFECT OF SURFACE MORPHOLOGY......Page 366
14.5.3 FORMATION AND CHARACTERIZATION OF SURFACE-BOUND INTERMEDIATES DURING PCO......Page 369
14.6.1 TIO2-COATED OPTICAL MICROFIBERS......Page 370
14.6.2 V-DOPED TIO2 PHOTOCATALYST......Page 371
14.6.3 MIXED SNO2–TIO2 CATALYSTS......Page 372
14.7 SSNMR STUDIES OF ZEOLITE PHOTOCATALYSTS......Page 373
REFERENCES......Page 376
15.1 INTRODUCTION......Page 378
15.2 ADVANCES IN MATERIALS......Page 379
15.2.1 SOL–GEL TECHNIQUES......Page 380
15.2.3 NITROGEN DOPING......Page 381
15.2.4.3 Loading with Metal Nanoclusters......Page 382
15.2.4.4 TiO2–WO3 Composites......Page 383
15.3.2 ANATASE–RUTILE INTERACTIONS......Page 384
15.3.3 QUANTUM SIZE EFFECTS......Page 385
15.4.1 SOLAR ENERGY CONVERSION......Page 386
15.4.2 DISINFECTION......Page 388
15.4.3 SENSORS......Page 390
15.4.4 PHOTOCHROMIC AND ELECTROCHROMIC DEVICES......Page 391
15.4.5 SELF-CLEANING AND SUPERHYDROPHILIC SURFACES......Page 392
REFERENCES......Page 394
CONTENTS......Page 400
16.1.1 EFFECTS OF NANOSIZING ON SURFACE AREA AND REACTIVE SURFACE SITES......Page 401
16.2 MODIFIED AEROGEL PROCESS (MAP)......Page 402
16.2.1 MORPHOLOGIES OF AP-NANOPARTICLES......Page 403
16.2.2 INTIMATELY MIXED BIMETALLIC OXIDES......Page 404
16.2.2.2 Surface Area Analysis......Page 406
16.2.3 RELATIONSHIP TO ZEOLITES......Page 407
16.2.3.3 Surface Areas......Page 408
16.2.3.4 Engineered Acid–Base Sites......Page 409
16.3.1.1 Chlorocarbons......Page 410
16.3.1.2 Organophosphorus Compounds......Page 412
16.3.2.1.1 Paraoxon Adsorption......Page 413
16.3.2.2 Chemical Warfare Agents......Page 414
16.3.2.2.1 Reactions of VX, GD, and HD with Nanosize MgO and CaO......Page 415
16.4 BIOCIDAL ACTION OF NANOPARTICLE FORMULATIONS......Page 417
16.4.2.1 Abrasiveness......Page 418
16.4.3 DETOXIFICATION OF WATERBORNE TOXINS......Page 419
16.5.1 TIO2......Page 420
16.5.2 VISIBLE LIGHT PHOTOCATALYSTS......Page 421
16.5.4.1 2-CEES......Page 422
16.5.4.2 Acetaldehyde Decomposition......Page 425
REFERENCES......Page 427
17.1 INTRODUCTION......Page 430
17.2.1 GENERATION OF SUPERSONIC EXPANSION BEAMS OF NEUTRAL METAL OXIDE CLUSTERS......Page 434
17.3.1 IRON OXIDE......Page 439
17.3.2 COPPER OXIDE......Page 445
17.3.3 ZIRCONIUM OXIDE......Page 450
17.3.4 VANADIUM OXIDE......Page 454
17.3.5 TITANIUM OXIDE......Page 455
17.3.6 REACTIVITY OF METAL OXIDE CLUSTERS......Page 462
17.3.6.1 Iron Oxide Clusters — Catalysis for the Reactions of CO–NO to CO2–N2......Page 463
17.3.6.2 Vanadium Oxide Clusters — Catalysis for the Reaction SO2–SO3 and CO–CO2......Page 466
17.3.7 CLUSTER STRUCTURE CALCULATIONS......Page 470
REFERENCES......Page 475
18.1 INTRODUCTION......Page 479
18.1.1 THE PROBLEM......Page 480
18.1.2 DEFINITION OF BASIC TERMS AND SCOPE......Page 481
18.2 GENERAL REQUIREMENTS FOR EFFECTIVE BIOREMEDIATION......Page 482
18.3 BIOREMEDIATION OF FUEL HYDROCARBONS (BTEX)......Page 483
18.3.2 GENERAL REQUIREMENTS FOR BTEX BIOREMEDIATION......Page 484
18.4.1 BASIC MICROBIOLOGY AND BIOCHEMISTRY OF CAH DEGRADATION......Page 487
18.4.1.1 Aerobic Cometabolism......Page 488
18.4.1.2 Dehalorespiration......Page 489
18.4.2.1 Aerobic Cometabolism......Page 490
18.4.3.1 Aerobic Cometabolism of TCE......Page 491
18.4.3.2 Dehalorespiration of PCE Contamination......Page 492
18.5.1 BASIC MICROBIOLOGY AND BIOCHEMISTRY OF PERCHLORATE DEGRADATION......Page 494
18.5.2 GENERAL REQUIREMENTS FOR PERCHLORATE BIOREMEDIATION......Page 495
18.6 SUMMARY AND CHALLENGES......Page 496
REFERENCES......Page 497
CONTENTS......Page 501
19.1.2 BACKGROUND......Page 502
19.2.1 THE THERMODYNAMIC APPROACH......Page 505
19.2.2 STOICHIOMETRY OF MICROBIAL REACTIONS......Page 506
19.2.3 MICROBIAL ENERGETICS AND YIELD......Page 507
19.2.4.2 Speciation and Concentration......Page 510
19.3.1 MICROBIAL GROWTH AND DECAY......Page 511
19.3.3 PARAMETER ESTIMATION......Page 515
19.4.1 CONTROL OF SOLUTION PH: ALKALINITY AND ACIDITY......Page 516
19.4.2 EQUILIBRIUM MODELING......Page 517
19.4.3 PRECIPITATION AND SOLUBILITY......Page 518
19.4.5 ABIOTIC OR SURFACE-CATALYZED REACTIONS......Page 520
19.4.6.3 Modeling Sorption......Page 521
19.5 BIOAVAILABILITY AND OBSERVED REDUCTION RATES......Page 522
19.6 CHEMICAL DELIVERY......Page 524
19.7 SUMMARY......Page 525
REFERENCES......Page 526
Section III: Environmental Catalysis in Green Chemical Processing......Page 529
20.1.1 SCOPE AND SIGNIFICANCE......Page 530
20.1.2 ENVIRONMENTAL AND ECONOMIC IMPACT AND RESEARCH INCENTIVES......Page 531
20.2.1 HOMOGENEOUS VERSUS HETEROGENEOUS SELECTIVE OXIDATION......Page 532
20.2.2 OXYGEN SPECIES AND OXYGEN INSERTION MECHANISMS......Page 534
20.2.3 SELECTIVITY......Page 536
20.3 SELECTIVE OXIDATION AND THE ENVIRONMENT......Page 537
20.3.1 PRODUCTION OF MALEIC ANHYDRIDE......Page 538
20.3.3 OLEFIN EPOXIDATION......Page 539
20.3.4 PHOTOCATALYTIC REACTIONS......Page 540
20.3.5 PARTIAL OXIDATION FOR HYDROGEN PRODUCTION......Page 541
20.3.6.2 Reaction Engineering Solutions......Page 542
20.4.1 ALKANES AS ALTERNATIVE FEED MATERIALS......Page 543
20.4.2 OXYGEN ACTIVATION STRATEGIES......Page 545
20.4.2.1 The Use of N2O......Page 546
20.4.2.2 Active Oxygen Species from Ozone......Page 547
20.4.2.3 In Situ Generation of H2O2......Page 548
20.4.2.4 Singlet Oxygen......Page 549
20.4.2.6 Electrochemical O2 Activation......Page 550
20.5 CONCLUSIONS......Page 551
REFERENCES......Page 552
21.1 INTRODUCTION......Page 554
21.2 ATOM ECONOMY AND ALTERNATIVE SOLVENTS......Page 555
21.3.1.1 Achiral Hydrogenation......Page 557
21.3.1.2 Asymmetric Hydrogenation......Page 560
21.3.2 HYDROFORMYLATION AND CARBONYLATION......Page 565
21.3.3.1 Heck Reactions......Page 570
21.3.3.2 Suzuki Coupling......Page 574
21.3.3.3 Stille Coupling......Page 577
21.3.3.4 Sonogashira Reactions......Page 578
21.3.3.5 Allylic Substitution......Page 580
21.3.3.6 Aldol and Michael Reactions......Page 581
21.3.4 DIELS–ALDER REACTIONS......Page 583
21.3.5 FRIEDEL–CRAFTS REACTIONS......Page 586
21.3.6 OLEFIN METATHESIS......Page 588
21.3.7 OLEFIN EPOXIDATION......Page 590
21.4 CONCLUSIONS......Page 592
REFERENCES......Page 593
22.1 INTRODUCTION......Page 598
22.2.1 HOMOGENEOUS BIPHASIC CATALYSIS......Page 599
22.2.2 AQUEOUS BIPHASIC HYDROFORMYLATION OF OLEFINS......Page 601
22.3 CATALYTIC HYDROGENATION IN AQUEOUS MEDIA......Page 602
22.3.2 HYDROGENATION OF C==O AND C==N BONDS......Page 603
22.3.3 ASYMMETRIC HYDROGENATION......Page 605
22.3.4 TRANSFER HYDROGENATION......Page 607
22.4.1.1 Epoxidation......Page 608
22.4.1.2 Dihydroxylation......Page 609
22.4.1.3 The Wacker Oxidation......Page 610
22.4.2 OXIDATION OF ALCOHOLS......Page 611
22.5 CONCLUSION......Page 612
REFERENCES......Page 613
23.1 INTRODUCTION......Page 616
23.2.1 ZEOLITES AND THEIR PROPERTIES IN HETEROGENEOUS CATALYSIS......Page 618
23.2.2.1 General Properties of Supercritical Fluid......Page 620
23.2.2.2 Pressure Effects and Kinetic Aspects......Page 621
23.3 SUPERCRITICAL FLUIDS IN HETEROGENEOUS CATALYSIS......Page 624
23.3.1.1 Alkylation and Acylation......Page 626
23.3.1.2 Zeolite-Catalyzed Alkylation Reactions in Supercritical Carbon Dioxide......Page 627
23.3.1.3 Zeolite-Catalyzed Acylation Reactions in Supercritical Carbon Dioxide......Page 629
REFERENCES......Page 631
24.1 INTRODUCTION......Page 634
24.2.1 PHASE BEHAVIOR......Page 637
24.2.2 APPLICATIONS......Page 639
24.3.1 PHASE BEHAVIOR......Page 641
24.3.2 APPLICATIONS......Page 643
24.4 LIQUID POLYMER–SCF SYSTEMS......Page 646
24.4.1 PHASE BEHAVIOR......Page 647
24.4.2 APPLICATIONS......Page 648
24.5.1 H2O–IL SYSTEMS......Page 649
24.5.3 SUBSTRATE OR PRODUCT IMMISCIBILITY......Page 650
24.5.5 SUPPORTED IONIC LIQUID CATALYSIS (SILC)......Page 651
24.6 CONCLUSIONS......Page 652
REFERENCES......Page 653
25.1 INTRODUCTION......Page 656
25.1.1 COFACTORS AND REGENERATION......Page 659
25.1.2 PROCESS ECONOMICS AND PRACTICAL CONSIDERATIONS......Page 660
25.2.1.1 Cofactor Regeneration by Single Enzymes......Page 661
25.2.1.2 Cofactor Regeneration by Metabolic Pathways......Page 664
25.2.2 OXIDATIONS......Page 666
REFERENCES......Page 671