دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Bibhuti Bhusan Mishra (editor), Suraja Kumar Nayak (editor), Swati Mohapatra (editor), Deviprasad Samantaray (editor) سری: ISBN (شابک) : 111952623X, 9781119526230 ناشر: Wiley-Scrivener سال نشر: 2021 تعداد صفحات: 440 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Environmental and Agricultural Microbiology: Applications for Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکروبیولوژی محیطی و کشاورزی: کاربردهایی برای پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب میکروبیولوژی محیطی و کشاورزی: کاربردهایی برای پایداری به دو بخش تقسیم میشود که شامل فصلهایی در مورد معاش و چرخه زندگی این میکروارگانیسمها در شرایط مختلف محیطی، پراکندگی آنها، تعامل با سایر ساکنان است. جوامع، تولید متابولیت و احیا. اگرچه کتاب های مربوط به میکروبیولوژی خاک و کشاورزی / بیوتکنولوژی زیست محیطی موجود است، کمبود ادبیات جامع در مورد رفتار میکروارگانیسم ها در حوزه محیطی و کشاورزی وجود دارد. بخش 1 شامل پاکسازی زیستی مواد شیمیایی کشاورزی توسط ریزجلبک ها، سم زدایی کروم و سایر فلزات سنگین توسط بیوفیلم میکروبی، فناوری بیوپلیمر میکروبی شامل پلی هیدروکسی آلکانوات ها (PHAs) و پلی هیدروکسی بوتیرات ها (PHB)، تولید آنها، رفتارهای تجزیه پذیری و کاربردها است. تولید بیوسورفکتانت و اهمیت تجاری آنها نیز به طور سیستماتیک در این بخش نشان داده شده است. قسمت 2 دارای 9 فصل است و ایده های ضروری را در مورد رویکردهای کشاورزی پایدار از طریق میکروب های کاربردی خاک، استراتژی های نسل بعدی بهبود محصول از طریق میکروبیوم ریزوسفر، تولید و اجرای کودهای زیستی مایع، کاهش متان از دام ها، کیتینازها از میکروب ها، اکستروموزیم ها، آنزیم ها، تسهیل می کند. میکروارگانیسم های افراطی دوست و ارتباط آنها در بیوتکنولوژی فعلی، جوامع لیتوبیونتیک و اهمیت زیست محیطی آنها به طور جامع توضیح داده شده است. در عصر تولید انرژی پایدار، سوخت زیستی و سایر محصولات انرژی زیستی نقش کلیدی ایفا می کنند و تولید آنها از منابع میکروبی مرزی برای محققان است. فصل آخر اهمیت میکروب ها و کنسرسیوم های آنها را برای مدیریت زباله های جامد در ادغام با بیوتکنولوژی آشکار می کند.
The book, Environmental and Agricultural Microbiology: Applications for Sustainability is divided in to two parts which embodies chapters on sustenance and life cycles of these microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on behavior of microorganisms in environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters and facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next generation crop improvement strategies via rhizosphere microbiome, production and implementations of liquid biofertilizers, mitigation of methane from livestocks, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities and their environmental importance have been comprehensively elaborated. In the era of sustainable energy production biofuel and other bioenergy products play a key role and their production from microbial sources are frontiers for researchers. The last chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface Part 1: MICROBIAL BIOREMEDIATIONAND BIOPOLYMER TECHNOLOGY 1 A Recent Perspective on Bioremediation of Agrochemicals by Microalgae: Aspects and Strategies 1.1 Introduction 1.2 Pollution Due to Pesticides 1.2.1 Acute Effects 1.2.2 Chronic Effects 1.3 Microalgal Species Involved in Bioremediation of Pesticides 1.4 Strategies for Phycoremediation of Pesticides 1.4.1 Involvement of Enzymes in Phycoremediation of Pesticides 1.4.2 Use of Genetically Engineered Microalgae 1.5 Molecular Aspects of Pesticide Biodegradation by Microalgae 1.6 Factor Affecting Phycoremediation of Pesticides 1.6.1 Biological Factor 1.6.2 Chemical Factor 1.6.3 Environment Factor 1.7 Benefit and Shortcomings of Phycoremediation 1.7.1 Benefits 1.7.2 Shortcomings 1.8 Conclusion and Future Prospects References 2 Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review 2.1 Introduction 2.1.1 Chromium Cycle 2.2 Effects of Hexavalent Chromium Toxicity 2.2.1 Toxicity to Microorganisms 2.2.2 Toxicity to Plant Body 2.2.3 Toxicity to Animals 2.3 Chromium Bioremediation by Microalgae 2.3.1 Cyanobacteria 2.3.2 Green Algae 2.3.3 Diatoms 2.4 Mechanism Involved in Hexavalent Chromium Reduction in Microalgae 2.5 Conclusion References 3 Biodetoxification of Heavy Metals Using Biofilm Bacteria 3.1 Introduction 3.2 Source and Toxicity of Heavy Metal Pollution 3.2.1 Non-Essential Heavy Metals 3.2.2 Essential Heavy Metals 3.3 Biofilm Bacteria 3.4 Interaction of Metal and Biofilm Bacteria 3.5 Biodetoxification Mechanisms 3.5.1 Biosorption 3.5.2 Bioleaching 3.5.3 Biovolatilization 3.5.4 Bioimmobilization 3.6 Conclusion References 4 Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects 4.1 Introduction 4.2 Polyamides 4.2.1 Bioavailability and Production 4.2.2 Biodegradability of Polyamides 4.2.3 Degradation of Nylon 4 Under the Soil 4.2.4 Fungal Degradation of Nylon 6 and Nylon 66 (Synthetic Polyamide) 4.2.5 Itaconic Acid-Based Heterocyclic Polyamide 4.2.6 Summary and Future Development 4.3 Polylactic Acid 4.3.1 Availability and Production 4.3.2 Polymerization Method 4.3.3 Biodegradability of Polylactic Acid 4.3.4 Copolymerization Method 4.3.5 Blending Method 4.3.6 Nanocomposite Formation 4.3.7 Summary 4.4 Polyhydroxyalkanoates 4.4.1 Biosynthesis of Polyhydroxyalkanoates 4.4.2 Application of PHAs 4.4.3 Biodegradability of PHAs 4.4.4 Degradability Methods 4.4.5 Summary 4.5 Conclusion and Future Development References 5 A Review on PHAs: The Future Biopolymer 5.1 Introduction 5.2 Green Plastic: Biodegradable Polymer Used as Plastic 5.3 Difference Between Biopolymer and Bioplastic 5.4 Polyhydroxyalkanoates 5.5 Polyhydroxyalkanoates and Its Applications 5.6 Microorganisms Producing PHAs 5.7 Advantages 5.8 Conclusion and Future Prospective References 6 Polyhydroxybutyrate as an Eco-Friendly Alternative of Synthetic Plastics 6.1 Introduction 6.2 Bioplastics 6.3 Bioplastics vs. Petroleum-Based Plastics 6.4 Classification of Biodegradable Polymers 6.5 PHB-Producing Bacteria 6.6 Methods for Detecting PHB Granules 6.7 Biochemical Pathway for Synthesis of PHB 6.8 Production of PHB 6.8.1 Process Optimization for PHB Production 6.8.2 Optimization of PHB Production by One Variable at a Time Approach 6.8.3 Statistical Approaches for PHB Optimization 6.9 Production of PHB Using Genetically Modified Organisms 6.10 Characterization of PHB 6.11 Various Biochemical Techniques Used for PHB Characterization 6.11.1 Fourier Transform Infrared Spectroscopy 6.11.2 Differential Scanning Calorimetry 6.11.3 Thermogravimetric Analysis 6.11.4 X-Ray Powder Diffraction (XRD) 6.11.5 Nuclear Magnetic Resonance Spectroscopy 6.11.6 Microscopic Techniques 6.11.7 Elemental Analysis 6.11.8 Polarimetry 6.11.9 Molecular Size Analysis 6.12 Biodegradation of PHB 6.13 Application Spectrum of PHB 6.14 Conclusion 6.15 Future Perspectives Acknowledgements References 7 Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications Abbreviations 7.1 Introduction 7.2 Conventional Plastics and Its Issues in Utility 7.2.1 Synthetic Plastic and Its Accumulation or Degradation Impacts 7.3 Bioplastics 7.3.1 Polyhydroxyalkanoates 7.4 Fermentation for PHAs Production 7.5 Downstream Process for PHAs 7.6 Conclusions References 8 Polyhydroxyalkanoates for Sustainable Smart Packaging of Fruits 8.1 Introduction 8.2 Physiological Changes of Fresh Fruits During Ripening and Minimal Processing 8.3 Smart Packaging 8.4 Biodegradable Polymers for Fruit Packaging 8.5 Legal Aspects of Smart Packaging 8.6 Pros and Cons of Smart Packaging Using PHAs 8.7 Conclusion References 9 Biosurfactants Production and Their Commercial Importance Abbreviations 9.1 Introduction 9.2 Chemical Surfactant Compounds 9.2.1 Biosurfactant Compounds 9.3 Properties of Biosurfactant Compound 9.3.1 Activities of Surface and Interface Location 9.3.2 Temperature and pH Tolerance 9.3.3 Biodegradability 9.3.4 Low Toxicity 9.3.5 Emulsion Forming and Breaking 9.4 Production of Biosurfactant by Microbial Fermentation 9.4.1 Factors Influencing the Production of Biosurfactants 9.5 Advantages, Microorganisms Involved, and Applications of Biosurfactants 9.5.1 Advantages of Using Biosurfactants 9.5.2 Microbial Sources 9.5.3 Production of Biosurfactants 9.6 Conclusions References Part 2: MICROBES IN SUSTAINABLEAGRICULTURE AND BIOTECHNOLOGICAL APPLICATIONS 10 Functional Soil Microbes: An Approach Toward Sustainable Horticulture 10.1 Introduction 10.2 Rhizosphere Microbial Diversity 10.3 Plant Growth–Promoting Rhizobacteria 10.3.1 Nitrogen Fixation 10.3.2 Production of Phytohormones 10.3.3 Production of Enzymes That can Transform Crop Growth 10.3.4 Microbial Antagonism 10.3.5 Solubilization of Minerals 10.3.6 Siderophore and Hydrogen Cyanide (HCN) Production 10.3.7 Cyanide (HCN) Production 10.3.8 Plant Growth–Promoting Rhizobacteria on Growth of Horticultural Crops 10.4 Conclusion and Future Perspectives References 11 Rhizosphere Microbiome: The Next-Generation Crop Improvement Strategy 11.1 Introduction 11.2 Rhizosphere Engineering 11.3 Omics Tools to Study Rhizosphere Metagenome 11.3.1 Metagenomics 11.3.2 Metaproteomics 11.3.3 Metatranscriptomics 11.3.4 Ionomics 11.4 As Next-Generation Crop Improvement Strategy 11.5 Conclusion References 12 Methane Emission and Strategies for Mitigation in Livestock 12.1 Introduction 12.2 Contribution of Methane from Livestock 12.3 Methanogens 12.3.1 Rumen Microbial Community 12.3.2 Methanogens Found in Rumen 12.3.3 Enrichment of Methanogens from Rumen Liquor 12.3.4 Screening for Methane Production 12.3.5 Isolation of Methanogens 12.3.6 Molecular Characterization 12.4 Methanogenesis: Methane Production 12.4.1 Pathways of Methanogenesis 12.4.2 Pathway of CO2 Reduction 12.4.3 CO2 Reduction to Formyl-Methanofuran 12.4.4 Conversion of the Formyl Group from FormylMethanofuran to Formyl-Tetrahydromethanopterin 12.4.5 Formation of Methenyl-Tetrahydromethanopterin 12.4.6 Reduction of Methenyl-Tetrahydromethanopterin to Methyl-Tetrahydromethanopterin 12.4.7 Reduction of Methyl-Tetrahydromethanopterin to Methyl-S-Coenzyme M 12.4.8 Reduction of Methyl-S-Coenzyme M to CH4 12.5 Strategies for Mitigation of Methane Emission 12.5.1 Dietary Manipulation 12.5.2 Feed Additives 12.5.3 Microbial Feed Additives 12.5.4 Animal Breeding and Selection 12.6 Conclusion References 13 Liquid Biofertilizers and Their Applications: An Overview 13.1 Introduction 13.1.1 Chemical Fertilizer and its Harmful Effect 13.2 Biofertilizers “Boon for Mankind” 13.3 Carrier-Based Biofertilizers 13.3.1 Solid Carrier-Based Biofertilizers 13.3.2 Liquid Biofertilizer 13.4 Sterilization of the Carrier 13.5 Merits of Using Liquid Biofertilizer Over Solid Carrier-Based Biofertilizer 13.6 Types of Liquid Biofertilizer 13.7 Production of Liquid Biofertilizers 13.7.1 Isolation of the Microorganism 13.7.2 Preparation of Medium and Growth Condition 13.7.3 Culture and Preservation 13.7.4 Preparation of Liquid Culture 13.7.5 Fermentation and Mass Production 13.7.6 Formulation of the Liquid Biofertilizers 13.8 Applications of Biofertilizers 13.9 Conclusion References 14 Extremozymes: Biocatalysts From Extremophilic Microorganisms and Their Relevance in Current Biotechnology 14.1 Introduction 14.2 Extremophiles: The Source of Novel Enzymes 14.2.1 Thermophilic Extremozymes 14.2.2 Psychrophilic Extremozymes 14.2.3 Halophilic Extremozymes 14.2.4 Alkaliphilic/Acidiophilic Extremozymes 14.2.5 Piezophilic Extremozymes 14.3 The Potential Application of Extremozymes in Biotechnology 14.4 Conclusion and Future Perspectives References 15 Microbial Chitinases and Their Applications: An Overview 15.1 Introduction 15.2 Chitinases and Its Types 15.3 Sources of Microbial Chitinase 15.3.1 Bacterial Chitinases 15.3.2 Fungal Chitinases 15.3.3 Actinobacteria 15.3.4 Viruses/Others 15.4 Genetics of Microbial Chitinase 15.5 Biotechnological Advances in Microbial Chitinase Production 15.5.1 Media Components 15.5.2 Physical Parameters 15.5.3 Modes and Methods of Fermentation 15.5.4 Advances Biotechnological Methods 15.6 Applications of Microbial Chitinases 15.6.1 Agricultural 15.6.2 Biomedical 15.6.3 Pharmaceutical 15.6.4 Industrial 15.6.5 Environmental 15.6.6 Others 15.7 Conclusion References 16 Lithobiontic Ecology: Stone Encrusting Microbes and their Environment 16.1 Introduction 16.2 Diversity of Lithobionts and Its Ecological Niche 16.2.1 Epiliths 16.2.2 Endoliths 16.2.3 Hypoliths 16.3 Colonization Strategies of Lithobionts 16.3.1 Temperature 16.3.2 Water Availability 16.3.3 Light Availability 16.4 Geography of Lithobbiontic Coatings 16.4.1 Bacteria 16.4.2 Cyanobacteria 16.4.3 Fungi 16.4.4 Algae 16.4.5 Lichens 16.5 Impacts of Lithobiontic Coatings 16.5.1 On Organic Remains 16.5.2 On Rock Weathering 16.5.3 On Rock Coatings 16.6 Role of Lithobionts in Harsh Environments 16.7 Conclusion Acknowledgement References 17 Microbial Intervention in Sustainable Production of Biofuels and Other Bioenergy Products 17.1 Introduction 17.2 Biomass 17.3 Biofuel 17.3.1 Biodiesel 17.3.2 Bioalcohol 17.3.3 Biogas 17.3.4 Biohydrogen 17.4 Other Bioenergy Products 17.4.1 Microbial Fuel Cells 17.4.2 Microbial Nanowires in Bioenergy Application 17.4.3 Microbial Nanowires in Bioenergy Production 17.5 Conclusion References 18 Role of Microbes and Microbial Consortium in Solid Waste Management 18.1 Introduction 18.2 Types of Solid Waste 18.2.1 Domestic Wastes 18.2.2 Institutional and Commercial Wastes 18.2.3 Wastes From Street Cleansing 18.2.4 Industrial Wastes 18.2.5 Nuclear Wastes 18.2.6 Agricultural Wastes 18.3 Waste Management in India 18.4 Solid Waste Management 18.4.1 Municipal Solid Waste Management 18.5 Solid Waste Management Techniques 18.5.1 Incineration 18.5.2 Pyrolysis and Gasification 18.5.3 Landfilling 18.5.4 Aerobic Composting 18.5.5 Vermicomposting 18.5.6 Anaerobic Digestion 18.5.7 Bioethanol From Various Solid Wastes 18.6 Conclusion References Index