ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches

دانلود کتاب افزایش تاب آوری کشاورزی دیم تحت شرایط آب و هوایی در حال تغییر: رویکردهای بین رشته ای و همگرایی

Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches

مشخصات کتاب

Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9811991588, 9789811991585 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 713
[714] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 30,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب افزایش تاب آوری کشاورزی دیم تحت شرایط آب و هوایی در حال تغییر: رویکردهای بین رشته ای و همگرایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب افزایش تاب آوری کشاورزی دیم تحت شرایط آب و هوایی در حال تغییر: رویکردهای بین رشته ای و همگرایی

این جلد ارائه شده، شیوه‌های مدیریتی را بر اساس رویکردهای علم میان رشته‌ای و همگرایی از رشته‌های مختلف علوم کشاورزی برای افزایش انعطاف‌پذیری کشاورزی دیم توصیف می‌کند. تمرکز اصلی این کتاب پرداختن به مسائل و روندهای فعلی همراه با چشم انداز و چالش های آینده در اتخاذ شیوه های مدیریت کشاورزی برجسته در زمین های خشک در سطح جهان تحت یک سناریوی تغییر آب و هوا است. تغییرات آب و هوا و گرم شدن کره زمین پیامدهای عمیقی بر افزایش دفعات، شدت و مدت خشکسالی و/یا سیل دارد که ممکن است پیامدهایی برای بهره وری کشاورزی در آینده داشته باشد، به عنوان مثال، کمبود یا فراوانی آب بیشتر و میزان رواناب بالا یا پایین، کاهش محصول. بازده و کاهش بهره وری آب. در چند سال گذشته، بسیاری از پیشرفت‌های فن‌آوری و استراتژی‌های مدیریتی برای مقابله با خطرات ناشی از اقلیم کشاورزی دیم با در نظر گرفتن رویکردهای میان رشته‌ای و همگرایی که دانش را از چند رشته ادغام می‌کند، تکامل یافته‌اند. این کتاب تلاشی است برای پر کردن شکاف در ادبیات با آشکار کردن بحث‌ها و ویژگی‌های اکوسیستم‌های دیم تحت تغییرات آب و هوا و پرداختن به رویه‌های دقیق اعمال شیوه‌های پیشرفته سازگار با تغییرات آب و هوایی برای مدیریت کشاورزی دیم. این کتاب ویرایش شده مورد توجه اکولوژیست ها، اقتصاددانان، محیط بانان، زمین شناسان، باغبانان، هیدرولوژیست ها، خاک شناسان، دانشمندان علوم اجتماعی، حافظان منابع طبیعی و سیاست گذارانی است که با کشاورزی دیم سروکار دارند. این کتاب درک وسیعی از کشاورزی دیم ارائه می دهد و به خواننده کمک می کند تا هم وضعیت فعلی و هم وضعیت احتمالی آینده کشاورزی دیم را در یک زمینه جهانی شناسایی کند.


توضیحاتی درمورد کتاب به خارجی

This contributed volume describes management practices based on interdisciplinary and convergence science approaches from different disciplines of agricultural science to enhance the resilience of dryland agriculture. The main focus of this book is to address the current issues and trends along with future prospects and challenges in adopting salient agricultural management practices in drylands globally under a climate-change scenario. Climate change and global warming have profound repercussions on increasing frequency, severity, and duration of droughts and/or floods, which may have implications for future productivity of dryland agriculture, e.g., more water shortages or abundances and high or low runoff rates, diminished crop yields, and reduced water productivity. In past few years, many technological advancements and management strategies have been evolved to tackle the climate-induced risks of dryland agriculture considering interdisciplinary and convergence approaches that integrate knowledge from multi-disciplines. This book is an attempt to bridge the gap in literature by unraveling controversies and characteristics of dryland ecosystems under the changing climate and dealing with detailed procedures of applying the advanced practices adapted to climate change for management of dryland agriculture. This edited book is of interest to ecologists, economists, environmentalists, geologists, horticulturalists, hydrologists, soil scientists, social scientists, natural resource conservationists and policy makers dealing with dryland agriculture. This book offers a broad understanding of dryland agriculture and assists the reader to identify both the current as well as the probable future state of dryland agriculture in a global context.



فهرست مطالب

Preface
Contents
Editors and Contributors
Part I: Dryland Agriculture and Climate Change
	1: Drylands: An Introduction
		1.1 Drylands under a Climate-Changing Scenario
		1.2 Challenges in Dryland Agriculture
		1.3 Management of Drylands for Sustainable Agriculture
		1.4 Future Prospects in Dryland Agriculture
		References
	2: Current State and Prediction of Future Global Climate Change and Variability in Terms of CO2 Levels and Temperature
		2.1 Introduction
		2.2 Concept of Climate Change (CC) and Climate Variability (CV)
		2.3 Observed Changes in the Climate System
			2.3.1 Recent Developments and Current Trends in CO2 and Other GHGs Emissions
			2.3.2 Surface Temperature (ST)
			2.3.3 Rise in Mean Sea Level (MSL)
			2.3.4 Extreme Weather Events (EWEs)
		2.4 Emission Trends, Drivers, and Impacts of CC
			2.4.1 Emission Trends and Drivers
				2.4.1.1 Natural Drivers
				2.4.1.2 Anthropogenic Drivers
			2.4.2 Impacts of CC
		2.5 Predict Future CC
			2.5.1 Representative Concentration Pathways (RCPs)
				2.5.1.1 RCP2.6
				2.5.1.2 RCP4.5
				2.5.1.3 RCP6.0
				2.5.1.4 RCP8.5
			2.5.2 RCP-Based Projected Changes in the Climate System
				2.5.2.1 Future Change in Atmospheric Temperature
				2.5.2.2 Future Change in Carbon Cycles
			2.5.3 Shared Socioeconomic Pathways (SSPs)
				2.5.3.1 SSP1: ``Sustainability´´
				2.5.3.2 SSP2: ``Middle of the Road´´
				2.5.3.3 SSP3: ``Regional Rivalry´´
				2.5.3.4 SSP4: ``Inequality´´
				2.5.3.5 SSP5: ``Fossil-Fueled Development´´
			2.5.4 SSP-Based Future Climate Projections
		2.6 Strategies for Combating CC Effects
			2.6.1 Afforestation and Reforestation
			2.6.2 Environmental Greening
			2.6.3 Agroforestry
			2.6.4 Climate-Smart Agricultural Practices
			2.6.5 Transport
			2.6.6 Societal Controls
			2.6.7 Policies and Regulations
		2.7 Conclusion
		References
	3: Vulnerability of Dryland Agriculture over Non-dryland Agriculture toward the Changing Climate
		3.1 Introduction
		3.2 Impact of Climate Change on Dryland System
		3.3 Need of Vulnerability Assessment
		3.4 Dryland Agriculture Implications under Climate Change
		3.5 Drylands´ Vulnerability to Climate Change
			3.5.1 Crop Rotation
			3.5.2 Residue Management
			3.5.3 Water Management
			3.5.4 Conservation Agriculture
			3.5.5 Germplasm
			3.5.6 Participatory of Locals
			3.5.7 Participatory Plant Breeding
			3.5.8 Changes in Cropping Patterns
			3.5.9 Carbon Sequestration and Increased Resilience of Soils
		3.6 Conclusion
		References
	4: Climate Risk Management in Dryland Agriculture: Technological Management and Institutional Options to Adaptation
		4.1 Introduction
		4.2 Climate-Resilient Technologies in Dryland Agriculture
		4.3 Seasonal Climate Forecasts (SCFs) for Climate Risk Management in Dryland Agriculture
		4.4 Climate Risk Management Approach for Climate Adoption in Dryland Agriculture
			4.4.1 Shift in Agricultural Systems
			4.4.2 Climate-Proof Crop Management and Irrigation Planning Systems
			4.4.3 Crop Management Aspects
				4.4.3.1 Crop Diversification (Crop Rotation, Intercropping, and Agroforestry)
				4.4.3.2 Suitable Crop Species (Millets and Pulses)
				4.4.3.3 Conservation Agriculture
			4.4.4 Water Management Aspects
				4.4.4.1 Judicial Irrigation Practices
				4.4.4.2 Rainwater Harvesting
		4.5 Technological Interventions for Climate Risk Management in Dryland Agriculture
			4.5.1 Shifting to Resilient Crops and Adapted Varieties
			4.5.2 Improvisations with Agronomic Interventions
			4.5.3 Robust, Planned, and Integrated Watershed Management
		4.6 Institutional Options for Climate Risk Management in Dryland Agriculture
			4.6.1 Index-Based Agricultural Insurance
				4.6.1.1 Weather Index-Based Insurance
			4.6.2 Village Climate Risk Management Committee
		4.7 Social Protection Programs for Climate Risks Prone Areas
		4.8 Agrometeorological Advisory Services (AAS)
		4.9 Conclusion
		References
Part II: Management of Natural Resources
	5: Achieving Land Degradation Neutrality to Combat the Impacts of Climate Change
		5.1 Introduction
			5.1.1 Climate and Soil Interaction
			5.1.2 Food Security in a Changing Climate
			5.1.3 Does the Soil Properties and Processes Influence Climate Change? (Biogeochemical Cycles)
			5.1.4 Soil Carbon Active and Inactive Pools
			5.1.5 Soils and the Carbon Sequestration
		5.2 Land Degradation Vis-à-Vis Agriculture
		5.3 Biomass Production Threat to Food Security and Land Degradation
		5.4 Sustainable Land Management (SLM) and Sustainable Forest Management (SFM)
		5.5 The Human Facet of Land Degradation and Forest Degradation
		5.6 Factors Affecting Land Degradation
			5.6.1 Processes of Land Degradation
			5.6.2 Types of Land Degradation Processes
			5.6.3 Drivers of Land Degradation
		5.7 Attribution of Climate Change Concerning Land Degradation
		5.8 Localized Efforts to Combat Land Deterioration
		5.9 Predictions of Land Deterioration Due to Climate Change
			5.9.1 Land Degradation´s Direct Effects
			5.9.2 Land Degradation´s Indirect Effects
			5.9.3 Effects of Land Degradation Brought on by Climate Change on Food Security
		5.10 Land Degradation Neutrality (LDN)
		5.11 Potential Options in Achieving LDN
			5.11.1 Agricultural and Soil Management Techniques
			5.11.2 Mechanically Conserving Soil and Water
			5.11.3 Agroforestry
			5.11.4 Local Farmers´ Knowledge of Addressing Land Degradation
			5.11.5 Decreasing Deforestation, Improving Forest Quality, and Boosting Afforestation
		References
	6: Establishing Linkages among Changes in Land Use, Vegetation, and Croplands to Arrest Soil Erosion and Desertification
		6.1 Introduction
		6.2 Land-Use Systems
		6.3 Land-Use and Land-Cover Changes (LULC)
			6.3.1 Types of Land -Use Changes and their Major Drivers
				6.3.1.1 Deforestation
				6.3.1.2 Rangeland Modification
				6.3.1.3 Agricultural Intensification
				6.3.1.4 Urbanization
		6.4 Impact of Land-Use Change on Land Degradation
			6.4.1 Impact of Changes in Land Use on Soil Erosion
			6.4.2 Impact of Changes in Land Use on Land Degradation and Desertification
		6.5 Impact of Changes in Vegetation on Soil Erosion
			6.5.1 Mechanism of Vegetation Effects on Soil Erosion
		6.6 Impact of Changes on Vegetation Due to Land Degradation and Desertification
		6.7 Impact of Changes in Cropland on Soil Erosion
			6.7.1 Soil Erosion and Cropland
		6.8 Impact of Changes in Cropland on Land Degradation and Desertification
		6.9 Establishing Relationship between Land-Use Changes and Vegetation on Soil Erosion and Degradation
		6.10 Alternate Land-Use Strategies for Arresting Soil Erosion and Land Degradation
		6.11 Conclusion
		References
	7: Management of Salt-Affected Soils for Increasing Crop Productivity
		7.1 Introduction
		7.2 Factors for Development of Salt-Affected Soils
		7.3 Classification and Characteristics of Salt-Affected Soils
			7.3.1 Saline Soils
			7.3.2 Alkali Soils
			7.3.3 Saline-Alkali Soils
		7.4 Reclamation and Management of Salt-Affected Soils
			7.4.1 Physical Methods
				7.4.1.1 Scraping
				7.4.1.2 Sanding
				7.4.1.3 Profile Inversion
				7.4.1.4 Deep Ploughing and Subsoiling
				7.4.1.5 Leaching
				7.4.1.6 Drainage System
			7.4.2 Chemical Methods
			7.4.3 Biological Methods
		7.5 Approaches for Strengthening both Productivity and Income of Farmers
		7.6 Conclusions
		References
	8: Role of Water Harvesting and Supplemental Irrigation in Enhancing Agriculture Productivity of Dryland under Climate Change
		8.1 Introduction
		8.2 Role of Climate-Resilient Water Management in Dryland Agriculture
			8.2.1 Concept and Component of Water Harvesting
			8.2.2 Water Harvesting Techniques
				8.2.2.1 Micro-Catchment System
				8.2.2.2 Macro-Catchment System
				8.2.2.3 Indian Traditional Water Harvesting Structures
				8.2.2.4 Modern Methods of Water Harvesting Structures
			8.2.3 Water Storage and Purpose
		8.3 Supplemental Irrigation
			8.3.1 Characteristics of Supplemental Irrigation (SI)
		8.4 Role of Water Harvesting and Supplemental Irrigation in Enhancing Agricultural Productivity of Drylands under Climate Chan...
			8.4.1 Increase in Water Productivity
			8.4.2 Increase in Crop Productivity
			8.4.3 Deficit Supplemental Irrigation
			8.4.4 Supplemental Irrigation in Protected Cultivation
			8.4.5 Optimization of Supplemental Irrigation
			8.4.6 Increasing Land and Water Productivity by Adopting Supplemental Irrigation
		8.5 Effect of Water Harvesting on Land and Water Productivity
			8.5.1 Increasing Land and Water Productivity by Adopting Water Harvesting
			8.5.2 In-Situ Rainwater Harvesting
			8.5.3 Ex-Situ Rainwater Harvesting
		8.6 Future Prospects and Conclusion
		References
	9: Assessment and Management of Soil and Water Erosion in Dryland Ecosystem
		9.1 Introduction
		9.2 Land Degradation in Dryland Ecosystems
		9.3 Drivers of Land Degradation and its Consequences
			9.3.1 Direct Drivers
				9.3.1.1 Soil Erosion
				9.3.1.2 Climate Change
				9.3.1.3 Land-Use Change
			9.3.2 Indirect Drivers
				9.3.2.1 Intensive Agriculture
				9.3.2.2 Salinity Hazard
				9.3.2.3 Ineffective Planning and Governance Policies
		9.4 Sustainable Land Management Strategies
		9.5 Conclusion
		References
	10: Advances in Micro-Irrigation Practices for Improving Water Use Efficiency in Dryland Agriculture
		10.1 Introduction
		10.2 Status of Micro-Irrigation in India and at a Global Scale
			10.2.1 Global Scenario of Sprinkler and Micro-Irrigation
			10.2.2 Indian Scenario of Sprinkler and Micro-Irrigation
			10.2.3 Timeline of Micro-Irrigation Development in India
		10.3 Climate Change and Water Use Efficiency
			10.3.1 Water Use Efficiency (WUE): A Concept
			10.3.2 Climate Change Impact on Water Availability, Demand, and WUE
		10.4 Advances Micro-Irrigation Technologies for Enhancing Water use Efficiency
			10.4.1 Deficit Irrigation (DI)
			10.4.2 Partial Root-Zone Drying (PRD)
			10.4.3 Alternate Partial Root-Zone Irrigation (APRI)
			10.4.4 Wastewater Application Using MIS
			10.4.5 Reverse Osmosis Subsurface Drip Irrigation
			10.4.6 Internet of Things (IoT) in Micro-Irrigation
			10.4.7 Soil Moisture Sensor in Micro-Irrigation
		10.5 Potential and Challenges of Micro-Irrigation in Dryland Agriculture
		10.6 Conclusions
		References
	11: Enhancing Agricultural Water Productivity Using Deficit Irrigation Practices in Water-Scarce Regions
		11.1 Introduction
		11.2 Definition and Feature of DI
		11.3 Types of Deficit Irrigation
			11.3.1 Regulated Deficit Irrigation
			11.3.2 Partial Root Zone Drying
		11.4 Water Productivity and Deficit Irrigation
		11.5 Deficit Irrigation Scheduling
		11.6 Techniques for Enhancing Water Use Efficiency
			11.6.1 Agronomical Measures
			11.6.2 Mulching
			11.6.3 Tillage
			11.6.4 Intercropping/Mixed Cropping and Crop Rotation
			11.6.5 Nutrient Management
			11.6.6 Use of Antitranspirants
			11.6.7 Crop Choice and Improved Varieties
			11.6.8 Engineering Measures
			11.6.9 Water Harvesting
			11.6.10 In Situ Water Conservation
			11.6.11 Terraces
			11.6.12 Contour Furrow
			11.6.13 Contour Bunds
			11.6.14 Tied Ridges
			11.6.15 Land Levelling with Lasers and Mini Benches
			11.6.16 Windbreaks and Shelterbelts
		11.7 Irrigation Methods
			11.7.1 Alternate Furrow Irrigation (AFI) Method
			11.7.2 Surge Irrigation
			11.7.3 Pressurized Irrigation System
			11.7.4 Sensor-Based Irrigation System
			11.7.5 Decision Support System (DSS)
			11.7.6 IOT-Based Smart Irrigation System
		11.8 Economics of Deficit Irrigation Strategies
			11.8.1 Bio-Economic Model for Deficit Irrigation
			11.8.2 Land Limiting Condition and Opportunity Cost of Water
			11.8.3 Empirical Models Used in Deficit Irrigation Economics
		11.9 Conclusion and Outlook
		References
	12: Meta-Analysis Studies Emphasizing Activities Related to Natural Resources Management for Imparting Resilience to Dryland A...
		12.1 Introduction
		12.2 Main Dryland Agricultural Areas Worldwide
		12.3 Keys Challenges and Issues in Dryland Agriculture
			12.3.1 Declining Natural Resources Management
			12.3.2 Climate Change Scenario in Dryland Agriculture
			12.3.3 Socioeconomic Issues
		12.4 Opportunities for Dryland Agriculture Resilience
			12.4.1 Technological Approaches
			12.4.2 Efficient Soil, Water, and Nutrient Management
			12.4.3 Improved Agronomic Practices
			12.4.4 Breeding and Genetic Resources for Abiotic Stress
			12.4.5 Use of GIS and Remote Sensing and Simulation Models for Identifying the Constraints and Yield-Gap Analysis
			12.4.6 Policies that Need to be Adopted
		12.5 Conclusions and Future Directions
		References
Part III: Improving Sustainability of Dryland Farming System by Improving Reliability and Resilience
	13: Soil Organic Carbon Sequestration in Dryland Soils to Alleviate Impacts of Climate Change
		13.1 Introduction
		13.2 Need for Carbon Sequestration in Dryland Regions
			13.2.1 Precipitation on Carbon Sequestration
			13.2.2 Temperature on Carbon Sequestration
			13.2.3 Soil Erosion on Carbon Sequestration
			13.2.4 Soil Organic Matter Content on Carbon Sequestration
			13.2.5 Soil Biodiversity and Livestock on Carbon Sequestration
			13.2.6 Social and Economic Barriers to Carbon Sequestration
		13.3 Dry Land as an Organic Carbon Storage Zone
		13.4 Desertification and Organic Carbon Sequestration Potential
			13.4.1 Biochar as Organic Carbon Source
			13.4.2 Ramial Chipped Wood (RCW) on Carbon Sequestration
		13.5 Soil Organic Carbon Sequestration in Mitigating Climate Change
			13.5.1 Humus on Carbon Sequestration
			13.5.2 Is there any Specific Carbon Concentration in Soil?
			13.5.3 Improving Soil Health and Mitigating Climate Change
		13.6 Climate Change´s Possible Effects on Soil Quality and Soil Organic Matter
		13.7 Potential of World Soil on Carbon Sequestration
		13.8 Climate Change Adaptation and Mitigation
			13.8.1 Alternate Land-Use Systems
			13.8.2 Agroforestry
			13.8.3 Efficient Water Management Techniques
			13.8.4 Resource Conservation Technologies
		13.9 Development of Policies Related to Carbon Sequestration in Dry Land
		13.10 Conclusions
		References
	14: Soil Inorganic Carbon in Dry Lands: An Unsung Player in Climate Change Mitigation
		14.1 Introduction
		14.2 Carbon Sequestration in Dry Lands
		14.3 Dry Land: A Store House of SIC
		14.4 Factors Affecting SIC Storage
			14.4.1 Soil Factors
				14.4.1.1 Soil pH
				14.4.1.2 Soil Microbial Activity and Respiration
				14.4.1.3 Other Soil Physicochemical Properties
			14.4.2 Anthropogenic Factors
		14.5 SIC and Climate Change
		14.6 Conclusion
		References
	15: Remediation of Polluted Soils for Managing Toxicity Stress in Crops of Dryland Ecosystems
		15.1 Introduction
		15.2 Kinds of Pollutants
			15.2.1 Heavy Metals
			15.2.2 Radionuclides
			15.2.3 Asbestos
			15.2.4 Organic Pollutants
			15.2.5 Emerging Pollutants
		15.3 Strategies for Remediation of Polluted Soils
			15.3.1 Physicochemical Methods
				15.3.1.1 Landfilling
				15.3.1.2 Excavation and off-Site Disposal of Polluted Soils
				15.3.1.3 Surface Capping
				15.3.1.4 Encapsulation
				15.3.1.5 Soil Washing (Soil Flushing)
				15.3.1.6 Soil Vapour Extraction
				15.3.1.7 Solidification
				15.3.1.8 Chemical Immobilization
				15.3.1.9 Chemical Dehalogenation
				15.3.1.10 Chemical Oxidation-Reduction
				15.3.1.11 Activated Carbon
			15.3.2 Thermal Remediation Techniques
				15.3.2.1 Thermal Desorption
				15.3.2.2 Incineration
				15.3.2.3 Vitrification
				15.3.2.4 Pyrolysis
				15.3.2.5 Hot Air Injection
				15.3.2.6 Steam Injection
				15.3.2.7 Smouldering
				15.3.2.8 Radiofrequency and Microwave Heating
				15.3.2.9 Electric Resistance Heating (ERH)
				15.3.2.10 Electrokinetic Separation
				15.3.2.11 Photocatalytic Oxidation
			15.3.3 Biological Techniques
				15.3.3.1 Phytoremediation
				15.3.3.2 Phytostabilization
				15.3.3.3 Phytostimulation
				15.3.3.4 Phytodegradation
				15.3.3.5 Phytoextraction (Phytoaccumulation)
				15.3.3.6 Disposal of Hyperaccumulators
				15.3.3.7 Limitations of Phytoremediation
				15.3.3.8 Bioventing
				15.3.3.9 Bioslurping
				15.3.3.10 Biosparging
				15.3.3.11 Biostimulation
				15.3.3.12 Bioaugmentation
				15.3.3.13 Bioattenuation
				15.3.3.14 Landfarming
				15.3.3.15 Composting
				15.3.3.16 Biopiling
				15.3.3.17 Slurry Phase
			15.3.4 Application of Nanotechnology in Remediation of Polluted Soils
		15.4 Selection of Remediation Technologies
		15.5 Conclusion
		References
	16: Fertilizer Management in Dryland Cultivation for Stable Crop Yields
		16.1 Introduction
		16.2 Integrated Nutrient Management Strategy for Nutrient Management in Dryland Agriculture
			16.2.1 Concept of INM
			16.2.2 Steps to Formulate INM Strategies
			16.2.3 Principles of INM and Improved Fertilizer Management Through INM
			16.2.4 Progress in INM Practices
		16.3 Nutrient Management Through Principles of Conservation Agriculture
			16.3.1 Nutrient Management in Dryland Regions Through Each Principle of CA
		16.4 Use of Biofertilizer in Dry Lands as Viable Option for Source of Nutrient to Plants
		16.5 Use of Biochar for Nutrient Management in Dryland Areas
		16.6 Time and Place of Nutrient Application in Dryland Areas
		16.7 Conclusion
		References
	17: Development of a Successful Integrated Farming System Model for Livelihood Sustenance of Dryland Farmers
		17.1 Introduction and Background
		17.2 Strategies to Increase Farm Income
		17.3 Status of Smallholders
		17.4 Challenges before Smallholders
		17.5 Necessity of Integrated Farming System
		17.6 Integrated Farming System Model/Modules
			17.6.1 Model/Modules for Small-Scale Farming
			17.6.2 Models/Modules for Dryland Farming Systems
			17.6.3 Model/Modules for Landless Farmers
		17.7 Added Advantages of IFS
			17.7.1 Economic Contribution
		17.8 Vertical Farming
		17.9 Small Farm Mechanization
		17.10 Resource Recycling
		17.11 Employment Generation
		17.12 Conclusion and Way Forward
		References
	18: Unlocking Potential of Dryland Horticulture in Climate-Resilient Farming
		18.1 Introduction
		18.2 Problems Associated with Dryland Farming
			18.2.1 Soil
			18.2.2 Water
			18.2.3 Rainfall
			18.2.4 Heat and Wind
			18.2.5 Disease and Pest Infestations
		18.3 Climate Change´s Impact on Growth and Development of Crops
		18.4 Strategies for Resistance to Climate Change-Related Adversity Mitigation and Adaptation
		18.5 The Biodiversity of the Hot Arid Zone
		18.6 Criteria for Crop and Variety Selection
		18.7 Principles of Dryland Farming Techniques
			18.7.1 Prevent a Crust at the Soil Surface
			18.7.2 Reducing the Moisture Loss from Soil
			18.7.3 Reducing Transpiration
		18.8 Climate-Resilient Technological Interventions
			18.8.1 Summer Fallow
			18.8.2 Bunding
			18.8.3 Agro-horticulture (Intercropping)
			18.8.4 Water Management
				18.8.4.1 Water Shed Management
				18.8.4.2 Rainwater Conservation and Harvesting
				18.8.4.3 Improved Irrigation Systems and Micro-irrigation
			18.8.5 Mulching
			18.8.6 Use of Plant Growth Regulators and Chemicals
			18.8.7 Plant Architecture and Canopy Management
			18.8.8 Integrated Nutrient Management
			18.8.9 Integrated Pest Management (IPM) Strategies
			18.8.10 Precision Farming
			18.8.11 Post-harvest Management
		18.9 Prospects of Dryland Horticulture
		18.10 Innovation in Technology Transfer
		18.11 Opportunities in Arid Horticulture to Combat the Negative Impact of Climate Change
		18.12 Conclusion
		References
Part IV: Crop Improvement and Pest Management
	19: Genetically Modified Crops and Crop Species Adapted to Global Warming in Dry Regions
		19.1 Introduction
		19.2 Genetically Modified Crops in Dry Regions
		19.3 Techniques for GMO Development
			19.3.1 Transgenesis
			19.3.2 Cisgenesis
			19.3.3 Intragenesis
			19.3.4 Genome Editing
		19.4 Safety Assessment of GMOs
		19.5 GMO Regulation and Legislations
		19.6 Conclusion and Future Prospects
		References
	20: Weed Management in Dryland Agriculture
		20.1 Introduction
		20.2 Attributes of Dryland Weeds
		20.3 Factors Affecting Weed Emergence in Dryland Areas
			20.3.1 Climatic Factors
			20.3.2 Edaphic Factors
			20.3.3 Biotic Factors
		20.4 Critical Period of Crop-Weed Competition
		20.5 Weed Shift Vulnerability in Drylands
		20.6 Economic Losses Caused by Weeds in India and Other Countries
		20.7 Dryland Weed Management Strategies
			20.7.1 Preventive Methods
			20.7.2 Cultural Methods
			20.7.3 Thermal Methods
			20.7.4 Soil Solarization
			20.7.5 Weed Flaming
			20.7.6 Weed Steaming
			20.7.7 Mechanical Methods
			20.7.8 Chemical Methods
			20.7.9 Biological Methods
			20.7.10 Biotechnological Methods
			20.7.11 Herbicide-Resistant Crops
			20.7.12 Bio-Herbicides
			20.7.13 Allelopathy
			20.7.14 Development of Transgenic Allelopathy in Crops
			20.7.15 Characterization of Weeds Using Molecular Systematics
			20.7.16 Improved Resource Conservation Technologies
				20.7.16.1 Conservation Agriculture (CA)
				20.7.16.2 Bed Planting
				20.7.16.3 Crop Diversification
				20.7.16.4 Brown Manuring
				20.7.16.5 Sub-Surface Drip Irrigation
				20.7.16.6 Precision Weed Management
				20.7.16.7 Agricultural Robotics for Weed Management
				20.7.16.8 Integrated Weed Management
		20.8 Conclusion
		References
	21: Insect and Pest Management for Sustaining Crop Production Under Changing Climatic Patterns of Drylands
		21.1 Introduction
		21.2 Effects of Climate Change in Drylands
			21.2.1 Insect Pest Biology
			21.2.2 Pest Status
			21.2.3 Invasive Insect Species
		21.3 Impact on Pest Management Strategies
			21.3.1 Chemical Control
			21.3.2 Cultural and Physical Control
			21.3.3 Host Plant Resistance
			21.3.4 Biological Control
		21.4 Conclusions
		References
	22: Potential Effects of Future Climate Changes in Pest Scenario
		22.1 Introduction
		22.2 Effect of Elevated Temperature on Pest Dynamics
			22.2.1 Increase in Geographical Range
			22.2.2 Increase in the Number of Generations of Insect Pest
			22.2.3 Overwintering Survival
			22.2.4 Impact on Biocontrol Agents
			22.2.5 Impact on Invasive Species
		22.3 Effect of Precipitation on Insect Pests
		22.4 Effect of Elevated CO2 Concentrations on Insect Pests
		22.5 Pest Management Under Climate Change Scenario
		22.6 Conclusions
		References
	23: Impact of Climate Change on Plant Viral Diseases
		23.1 Introduction
		23.2 Effect of Elevated CO2 on Host, Vector and Virus
			23.2.1 Elevated CO2 Impacts on Bell Pepper Growth with Consequences to Myzus persicae Life History, Feeding Behaviour and Viru...
		23.3 Temperature
			23.3.1 High Temperature Activates Local Viral Multiplication and Cell-to-Cell Movement of Melon Necrotic Spot Virus (MNSV) but...
			23.3.2 Effect of Elevated CO2 and Temperature on Pathogenicity Determinants and Virulence of Potato Virus X (PVX)/Potyvirus-As...
		23.4 Rainfall
			23.4.1 Water Stress Modulates Soybean Aphid Performance, Feeding Behaviour and Virus Transmission in Soybean
			23.4.2 Drought Reduces Transmission of Turnip Yellows Virus, an Insect-Vectored Circulative Virus
			23.4.3 Epidemiology of ChiLCVD on Syngenta 5531 Chilli Hybrid
			23.4.4 Pigeon pea Sterility Mosaic Disease
		23.5 Conclusions
		References
	24: Adaptation Strategies for Protected Cultivation Under Changing Climate Patterns in Dry Regions
		24.1 Introduction
		24.2 Need for Adaptation Strategies Under Protected Cultivation in Dry Regions
			24.2.1 Impacts of Climate Change
				24.2.1.1 Increase in Atmospheric CO2
				24.2.1.2 Increase in Air Temperature
				24.2.1.3 Change in Rainfall
				24.2.1.4 Instability in Yields of High-Quality Products
				24.2.1.5 The Impacts of Elevated Temperatures on Pests and Diseases
		24.3 Different Adaptations Strategies for Protected Cultivation to Reduce the Climate Change Effect in Dry Regions
			24.3.1 To Combat Climate Change, Greenhouse Gas Emissions Must Be Increased
			24.3.2 To Reduce Water Scarcity, Water Consumption Must Be Reduced and Water Usage Efficiency Must Be Increased
				24.3.2.1 Screenhouses
				24.3.2.2 Semi-/Closed Greenhouses
			24.3.3 For Winter Production, Increased Usage and Improvement of Natural and Extra Light
			24.3.4 Heat Waves and Required Cooling
				24.3.4.1 Cooling and Ventilation by Screens
				24.3.4.2 Cooling in Passively Ventilated Greenhouses
				24.3.4.3 Air Velocity and Ventilation Rate Are the Main Features to Efficient Passive Cooling
				24.3.4.4 Semi-closed Greenhouse Cooling and Efficient Use of CO2
			24.3.5 Plant Protection in a Changing Climate
			24.3.6 Breeding
			24.3.7 Ensuring Continuous Market Supply Under Climate Change
			24.3.8 Other Adaptation Possibilities
		24.4 Constraints in Adaptive Strategies in Protected Cultivation Under Climate Change (CC) in Dry Region
			24.4.1 Climate Change Impacts
				24.4.1.1 Impacts of Climate Change on Crop Production in Protected Environments
				24.4.1.2 The Impacts of Increasing Atmospheric CO2
				24.4.1.3 The Impacts of Changing Precipitation Patterns
				24.4.1.4 The Impacts of High Summer Temperatures
				24.4.1.5 The Impacts of Elevated Temperatures on Pests and Diseases
		24.5 Conclusions and Future Prospects
		References
	25: Organic Farming: Prospects and Challenges in Drylands
		25.1 Introduction
		25.2 Benefits of Organic Farming
			25.2.1 Improvement in Soil Quality
			25.2.2 Nutritional Benefits and Health Safety
			25.2.3 Socioeconomic Impact
		25.3 Specific Benefits of Organic Farming for the Drylands of India
		25.4 Challenges for Organic Agriculture
		25.5 Strategies for Promoting Organic Farming in Drylands
			25.5.1 Popularize Organic Farming Without the Compulsion of Certification
			25.5.2 Promote Ley Farming
			25.5.3 Integrate Efforts of Supporting Agencies
			25.5.4 Encourage Decentralized Input Supply
			25.5.5 Adopt Improved Methods of Composting
			25.5.6 Increase Public Awareness and Build Capacity
			25.5.7 Subsidize Organic Inputs and Produce
			25.5.8 Promote High-Value Crops
			25.5.9 Develop Organic Farming Clusters of Villages
			25.5.10 Develop Certification Programs and Marketing Chains
		25.6 Organic Farming for the Drylands of India: Ecological Sustainability
		25.7 Main Principles of Organic Farming
		25.8 Future Prospectus of Organic Farming
		25.9 Organic Agriculture and Sustainable Development
		25.10 Social Sustainability
		25.11 Importance of Dryland Farming
			25.11.1 Characteristics of Dryland Agriculture in India
		25.12 Problems of Dryland Farming
		25.13 Conclusions
		References
	26: Biochemical and Molecular Aspects for Plant Improvement Under Climate Stress
		26.1 Introduction
		26.2 Climate Change and Food Security: A Global Scenario
		26.3 Crop Response Towards Climate-Driven Environmental Stresses
			26.3.1 Morphological Response to Abiotic Stress
			26.3.2 Cellular Response to Abiotic Stress
			26.3.3 Photosynthetic Machinery Modulation and Gaseous Exchange
			26.3.4 Osmotic Adjustment and Osmoprotectants
			26.3.5 Oxidative Damage and ROS (Reactive Oxygen Species) Regulation
		26.4 Plant Molecular Chaperones
			26.4.1 Classification of HSPs
				26.4.1.1 HSP100 Family
				26.4.1.2 HSP90 Family
				26.4.1.3 HSP70 Family
				26.4.1.4 HSP60 Family
				26.4.1.5 HSP40 Family
				26.4.1.6 sHSP Family
		26.5 Molecular Breeding Methods
			26.5.1 QTLs for Drought Stress Tolerance
				26.5.1.1 Wheat
				26.5.1.2 Rice
				26.5.1.3 Sorghum
				26.5.1.4 Barley
				26.5.1.5 Cotton
				26.5.1.6 Common Bean
			26.5.2 QTLs for High-Temperature Stress Tolerance
				26.5.2.1 Wheat
				26.5.2.2 Rice
			26.5.3 QTLs for Low-Temperature Stress Tolerance
				26.5.3.1 Rice
				26.5.3.2 Maize
				26.5.3.3 Barley
			26.5.4 QTLs for Salinity Stress Tolerance
				26.5.4.1 Wheat
				26.5.4.2 Rice
			26.5.5 QTLs for Water Lodging Stress Tolerance
			26.5.6 QTLs for Water Submergence Stress Tolerance
		26.6 Omics Techniques for Crop Improvement
			26.6.1 Transcriptomics
			26.6.2 Proteomics
			26.6.3 Metabolomics
		26.7 QTL Analysis-Based Breeding with Advanced Backcross (AB-Breeding)
		26.8 Genomics-Assisted Breeding (GAB)
		26.9 Next-Generation GAB Approaches
			26.9.1 Genomic Selection (GS)
			26.9.2 Genome Editing
		26.10 Phenomics and Artificial Intelligence (AI)
		26.11 Genome-Wide Association Study (GWAS) and Association Mapping (AM)
			26.11.1 Genome-Wide Association Study (GWAS)
				26.11.1.1 Rice
				26.11.1.2 Upland Cotton
				26.11.1.3 Wheat
				26.11.1.4 Maize
			26.11.2 Association Mapping (AM)
		26.12 Future Perspectives of Crop Improvement for Stress Combination and Conclusion
		References
Part V: Livestock Production and Management
	27: Understanding Linkages Between Livestock Sensitivity and Climate Variability in Drylands for Developing Appropriate Manage...
		27.1 Introduction
		27.2 Dryland Livestock and Government Schemes
		27.3 Impact of Climate Change on Dryland Livestock
		27.4 Species: Wise Impact of Climate Change
		27.5 Strategies for Dryland Livestock Development vis-à-vis Changing Climates
			27.5.1 Livestock Breeding
			27.5.2 Livestock Production and Management
			27.5.3 Climate Change Mitigation Through Improved Husbandry Practices
			27.5.4 Participatory Approach
		27.6 Conclusions
		References
	28: Grass-Legume Intercropping for Enhancing Quality Fodder Production in Drylands
		28.1 Introduction
		28.2 The Concept of Intercropping and Its Mechanisms
			28.2.1 Types of Intercropping
				28.2.1.1 Mixed Intercropping
				28.2.1.2 Row Intercropping
				28.2.1.3 Strip Intercropping
				28.2.1.4 Relay Cropping
			28.2.2 Crop Combinations in Intercropping
			28.2.3 The Need for Intercropping of Grasses and Legumes
		28.3 Advantages of Grass-Legume Intercropping
			28.3.1 Yield Advantage
			28.3.2 Fodder Quality
			28.3.3 Suppresses Weeds
			28.3.4 Improved Use of Resources
		28.4 Limitations of Grass-Legume Intercropping
		28.5 Conclusion
		References
Part VI: Improving Livelihood and Socio-Economic Status of Dryland Farmers
	29: Economic Analysis of Sustainable Dryland Agriculture Practices
		29.1 Introduction
		29.2 Dryland Farming Techniques
			29.2.1 Increase Water Absorption
			29.2.2 Reduce the Run-Off of Water
			29.2.3 Reducing Soil Evaporation
			29.2.4 Reducing Transpiration
		29.3 Agricultural Economists Can Improve the Quality and Comprehensiveness of Agricultural Systems Research in Six Areas
		29.4 Budgeting and Investment Analysis
		29.5 Methodology
		29.6 Conclusions
		29.7 Recommendations
		References
	30: Adoption of Sustainable Dryland Technologies for Improving Livelihood of Farmers in Developing Countries
		30.1 Introduction
		30.2 Importance of Dryland Agriculture in Ensuring Livelihood
			30.2.1 Helps in Ensuring the Nutritional Security
			30.2.2 Dryland Farming Helps in Reduction of Desertification Process
			30.2.3 Source of Livelihood for Large Chunk of Population
			30.2.4 Dryland Offers Good Source of Development
			30.2.5 Dryland Agriculture Is Key to Food Security
		30.3 Constraints of Dryland Agriculture
			30.3.1 Prevalence of Heat and Wind
			30.3.2 Soil and Moisture Problems
			30.3.3 Environmental Changes of Waterlogging and Salinity
			30.3.4 Dietary Habits and Nutritional Characteristics of Crops Grown
			30.3.5 Limited and Uneven Distribution of Rainfall
			30.3.6 Large-Scale Prevalence of Monocropping
			30.3.7 Poor Fertility Status in Marginal Lands and Low Productivity
			30.3.8 Socioeconomic Constraints of the Dryland Farmers
		30.4 Soil and Water Management Techniques
			30.4.1 Summer Ploughing
			30.4.2 Ridges and Furrows
			30.4.3 Contour Farming
			30.4.4 Ploughing Across the Slope
			30.4.5 Vegetative Barriers
			30.4.6 Intercropping
			30.4.7 Strip Cropping
			30.4.8 Mulching
			30.4.9 Alternate Land Use Pattern
			30.4.10 Broad Beds and Furrows
			30.4.11 Contour Bunding
			30.4.12 Contour Trenches
			30.4.13 Compartmental Bunding
			30.4.14 Random Tied Ridging
			30.4.15 Basin Listing
			30.4.16 Microcatchment
			30.4.17 Percolation Ponds
			30.4.18 Check Dams
		30.5 Crop Production Technologies for Dryland Areas
			30.5.1 Crop Management Practices
			30.5.2 Soil Management
			30.5.3 Use of Mulches
			30.5.4 Use of Anti-transpirants
		30.6 Dry Spells Immediately After Sowing
		30.7 Break in Monsoon, Mid-season or Late
		30.8 Techniques to Reduce Evapotranspiration Loss and Improve Water Use Efficiency
			30.8.1 Mulching
			30.8.2 Soil Fertility Management
			30.8.3 Genetic Improvement of Crops
			30.8.4 Seeding Rate and Planting Pattern
			30.8.5 Planting Calendar
			30.8.6 Water Management
			30.8.7 Weed Management
		30.9 Factors Affecting Adoption of Improved Farm Technologies
			30.9.1 Socioeconomic Factors
			30.9.2 Variation in Climatic Conditions
				30.9.2.1 Accessibility to Farm Technologies
				30.9.2.2 Marketing Linkages
				30.9.2.3 Institutional Support
		30.10 Adoption of Sustainable Dryland Technologies: Successful Case Studies from Developing Countries of the World
		30.11 Conclusion
		References
	31: Challenges and Prospects in Managing Dryland Agriculture Under Climate Change Scenario
		31.1 Introduction
		31.2 Impact of Climate Changes on Dryland Agriculture
		31.3 Challenges in Dryland Agriculture
			31.3.1 Inadequate and Uneven Distribution of Rainfall
			31.3.2 Late-Onset and Early Cessation of Rains
			31.3.3 Drought
			31.3.4 Prolonged Dry Spells during the Crop Period
			31.3.5 Low Moisture Retention Capacity
			31.3.6 Low Fertility of Soils
		31.4 Strategies to Mitigate the Effects of Climate Change on Dryland Agriculture
		31.5 Future Perspectives
		31.6 Conclusion
		References
	32: Adaptive Resilience: Sustaining Dryland Agriculture the Pastoralist Way
		32.1 Introduction
		32.2 Pastoralism in Drylands
		32.3 Pastoral Resilience
			32.3.1 Mobility
			32.3.2 Diversity
			32.3.3 Flexibility
			32.3.4 Reciprocity
		32.4 Impact of Climate Change in Drylands
			32.4.1 Variability in Climatic Patterns
			32.4.2 Variability in Vegetation
			32.4.3 Variability in Soil Carbon Content
		32.5 Pastoralism Vis-à-Vis Climate Change
		32.6 Strengthening Pastoral Resilience
			32.6.1 Short-Term Adaptation Strategies
				32.6.1.1 Insurance Products
				32.6.1.2 Early Warning Systems
				32.6.1.3 Customized Credit Availability
			32.6.2 Long-Term Adaptation Strategies
				32.6.2.1 Availability of Basic Infrastructure and Services
				32.6.2.2 Acknowledging Ecological Contribution
				32.6.2.3 Governance and Land Tenure Rights
				32.6.2.4 Regional Dimensions of Pastoralism
		32.7 Conclusions
		References
Part VII: Farm Mechanization in Dryland Agriculture
	33: Resource Conserving Mechanization Technologies for Dryland Agriculture
		33.1 Introduction
		33.2 Resource Conserving Technologies for Tillage, Seed Bed Preparation, and Sowing Operations
			33.2.1 Chisel Plough
			33.2.2 Subsoiler
			33.2.3 Blade Harrow
			33.2.4 Laser Land Leveller
			33.2.5 Duck Foot/Sweep Cultivator
			33.2.6 Mulcher
			33.2.7 Strip-Till Drill
			33.2.8 Turbo Happy Seeder
			33.2.9 Seeder/Planter Cum Herbicide Applicator
			33.2.10 Pneumatic Precision Planter
			33.2.11 Multi-Crop Raised Bed Planter/Broad Bed Furrow (BBF) Planter
		33.3 Resource Conserving Technologies in Fertilizer and Chemical Applications
			33.3.1 Ultrasonic Orchard Sprayer
			33.3.2 Electrostatic Sprayer
			33.3.3 Unmanned Aerial Vehicles (UAV)/Drones
			33.3.4 Tractor-Operated High Clearance Boom Sprayer
		33.4 Water-Conserving Technologies
			33.4.1 Drip Irrigation System
			33.4.2 Subsurface Drip Irrigation System
			33.4.3 Sprinkler Irrigation System
			33.4.4 Plastic Mulch Laying Machine
			33.4.5 Conservation Agriculture
		33.5 Effective Technologies for Mechanical Control of Weeds
			33.5.1 Narrow Tyne/Interrow Cultivator/Interrow Weeder
			33.5.2 Spring Tyne Harrow
			33.5.3 Intra-Row Weeder
			33.5.4 Self-Propelled Power Weeder
		33.6 Resource Conserving Technologies for Harvesting and Threshing Operations
			33.6.1 Self-Propelled Reaper
			33.6.2 Cotton Stalk Shredder
			33.6.3 Multi-Crop Thresher
		33.7 Conclusion
		References
	34: Agricultural Mechanization for Efficient Utilization of Input Resources to Improve Crop Production in Arid Region
		34.1 Introduction
			34.1.1 An Overview of Agricultural Mechanization
			34.1.2 Status and Scope of Agricultural Mechanization in the Arid Region
			34.1.3 Rajasthan Government´s Initiatives for Farm Mechanization
		34.2 Farm Mechanization in the Arid Region
			34.2.1 Tillage
			34.2.2 Sowing/Transplanting
			34.2.3 Weeding and Intercultural Operations
			34.2.4 Irrigation
			34.2.5 Plant Protection Operations
			34.2.6 Harvesting and Threshing
		34.3 Socio-Economic Aspect of Farm Mechanization
			34.3.1 Drudgery Involved in the Farm Operation
			34.3.2 Cost-Economics of Agricultural Machineries
		34.4 Future Mechanization Pathway through IoT-Based Technologies
			34.4.1 Mechatronics
			34.4.2 Precision Agriculture
			34.4.3 Robotics in Agricultural Work
			34.4.4 Use of Internet of Things in Agricultural Implements
			34.4.5 Artificial Intelligence
		34.5 Conclusions
		References




نظرات کاربران