دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anandkumar Naorem. Deepesh Machiwal
سری:
ISBN (شابک) : 9811991588, 9789811991585
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 713
[714]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب افزایش تاب آوری کشاورزی دیم تحت شرایط آب و هوایی در حال تغییر: رویکردهای بین رشته ای و همگرایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد ارائه شده، شیوههای مدیریتی را بر اساس رویکردهای علم میان رشتهای و همگرایی از رشتههای مختلف علوم کشاورزی برای افزایش انعطافپذیری کشاورزی دیم توصیف میکند. تمرکز اصلی این کتاب پرداختن به مسائل و روندهای فعلی همراه با چشم انداز و چالش های آینده در اتخاذ شیوه های مدیریت کشاورزی برجسته در زمین های خشک در سطح جهان تحت یک سناریوی تغییر آب و هوا است. تغییرات آب و هوا و گرم شدن کره زمین پیامدهای عمیقی بر افزایش دفعات، شدت و مدت خشکسالی و/یا سیل دارد که ممکن است پیامدهایی برای بهره وری کشاورزی در آینده داشته باشد، به عنوان مثال، کمبود یا فراوانی آب بیشتر و میزان رواناب بالا یا پایین، کاهش محصول. بازده و کاهش بهره وری آب. در چند سال گذشته، بسیاری از پیشرفتهای فنآوری و استراتژیهای مدیریتی برای مقابله با خطرات ناشی از اقلیم کشاورزی دیم با در نظر گرفتن رویکردهای میان رشتهای و همگرایی که دانش را از چند رشته ادغام میکند، تکامل یافتهاند. این کتاب تلاشی است برای پر کردن شکاف در ادبیات با آشکار کردن بحثها و ویژگیهای اکوسیستمهای دیم تحت تغییرات آب و هوا و پرداختن به رویههای دقیق اعمال شیوههای پیشرفته سازگار با تغییرات آب و هوایی برای مدیریت کشاورزی دیم. این کتاب ویرایش شده مورد توجه اکولوژیست ها، اقتصاددانان، محیط بانان، زمین شناسان، باغبانان، هیدرولوژیست ها، خاک شناسان، دانشمندان علوم اجتماعی، حافظان منابع طبیعی و سیاست گذارانی است که با کشاورزی دیم سروکار دارند. این کتاب درک وسیعی از کشاورزی دیم ارائه می دهد و به خواننده کمک می کند تا هم وضعیت فعلی و هم وضعیت احتمالی آینده کشاورزی دیم را در یک زمینه جهانی شناسایی کند.
This contributed volume describes management practices based on interdisciplinary and convergence science approaches from different disciplines of agricultural science to enhance the resilience of dryland agriculture. The main focus of this book is to address the current issues and trends along with future prospects and challenges in adopting salient agricultural management practices in drylands globally under a climate-change scenario. Climate change and global warming have profound repercussions on increasing frequency, severity, and duration of droughts and/or floods, which may have implications for future productivity of dryland agriculture, e.g., more water shortages or abundances and high or low runoff rates, diminished crop yields, and reduced water productivity. In past few years, many technological advancements and management strategies have been evolved to tackle the climate-induced risks of dryland agriculture considering interdisciplinary and convergence approaches that integrate knowledge from multi-disciplines. This book is an attempt to bridge the gap in literature by unraveling controversies and characteristics of dryland ecosystems under the changing climate and dealing with detailed procedures of applying the advanced practices adapted to climate change for management of dryland agriculture. This edited book is of interest to ecologists, economists, environmentalists, geologists, horticulturalists, hydrologists, soil scientists, social scientists, natural resource conservationists and policy makers dealing with dryland agriculture. This book offers a broad understanding of dryland agriculture and assists the reader to identify both the current as well as the probable future state of dryland agriculture in a global context.
Preface Contents Editors and Contributors Part I: Dryland Agriculture and Climate Change 1: Drylands: An Introduction 1.1 Drylands under a Climate-Changing Scenario 1.2 Challenges in Dryland Agriculture 1.3 Management of Drylands for Sustainable Agriculture 1.4 Future Prospects in Dryland Agriculture References 2: Current State and Prediction of Future Global Climate Change and Variability in Terms of CO2 Levels and Temperature 2.1 Introduction 2.2 Concept of Climate Change (CC) and Climate Variability (CV) 2.3 Observed Changes in the Climate System 2.3.1 Recent Developments and Current Trends in CO2 and Other GHGs Emissions 2.3.2 Surface Temperature (ST) 2.3.3 Rise in Mean Sea Level (MSL) 2.3.4 Extreme Weather Events (EWEs) 2.4 Emission Trends, Drivers, and Impacts of CC 2.4.1 Emission Trends and Drivers 2.4.1.1 Natural Drivers 2.4.1.2 Anthropogenic Drivers 2.4.2 Impacts of CC 2.5 Predict Future CC 2.5.1 Representative Concentration Pathways (RCPs) 2.5.1.1 RCP2.6 2.5.1.2 RCP4.5 2.5.1.3 RCP6.0 2.5.1.4 RCP8.5 2.5.2 RCP-Based Projected Changes in the Climate System 2.5.2.1 Future Change in Atmospheric Temperature 2.5.2.2 Future Change in Carbon Cycles 2.5.3 Shared Socioeconomic Pathways (SSPs) 2.5.3.1 SSP1: ``Sustainability´´ 2.5.3.2 SSP2: ``Middle of the Road´´ 2.5.3.3 SSP3: ``Regional Rivalry´´ 2.5.3.4 SSP4: ``Inequality´´ 2.5.3.5 SSP5: ``Fossil-Fueled Development´´ 2.5.4 SSP-Based Future Climate Projections 2.6 Strategies for Combating CC Effects 2.6.1 Afforestation and Reforestation 2.6.2 Environmental Greening 2.6.3 Agroforestry 2.6.4 Climate-Smart Agricultural Practices 2.6.5 Transport 2.6.6 Societal Controls 2.6.7 Policies and Regulations 2.7 Conclusion References 3: Vulnerability of Dryland Agriculture over Non-dryland Agriculture toward the Changing Climate 3.1 Introduction 3.2 Impact of Climate Change on Dryland System 3.3 Need of Vulnerability Assessment 3.4 Dryland Agriculture Implications under Climate Change 3.5 Drylands´ Vulnerability to Climate Change 3.5.1 Crop Rotation 3.5.2 Residue Management 3.5.3 Water Management 3.5.4 Conservation Agriculture 3.5.5 Germplasm 3.5.6 Participatory of Locals 3.5.7 Participatory Plant Breeding 3.5.8 Changes in Cropping Patterns 3.5.9 Carbon Sequestration and Increased Resilience of Soils 3.6 Conclusion References 4: Climate Risk Management in Dryland Agriculture: Technological Management and Institutional Options to Adaptation 4.1 Introduction 4.2 Climate-Resilient Technologies in Dryland Agriculture 4.3 Seasonal Climate Forecasts (SCFs) for Climate Risk Management in Dryland Agriculture 4.4 Climate Risk Management Approach for Climate Adoption in Dryland Agriculture 4.4.1 Shift in Agricultural Systems 4.4.2 Climate-Proof Crop Management and Irrigation Planning Systems 4.4.3 Crop Management Aspects 4.4.3.1 Crop Diversification (Crop Rotation, Intercropping, and Agroforestry) 4.4.3.2 Suitable Crop Species (Millets and Pulses) 4.4.3.3 Conservation Agriculture 4.4.4 Water Management Aspects 4.4.4.1 Judicial Irrigation Practices 4.4.4.2 Rainwater Harvesting 4.5 Technological Interventions for Climate Risk Management in Dryland Agriculture 4.5.1 Shifting to Resilient Crops and Adapted Varieties 4.5.2 Improvisations with Agronomic Interventions 4.5.3 Robust, Planned, and Integrated Watershed Management 4.6 Institutional Options for Climate Risk Management in Dryland Agriculture 4.6.1 Index-Based Agricultural Insurance 4.6.1.1 Weather Index-Based Insurance 4.6.2 Village Climate Risk Management Committee 4.7 Social Protection Programs for Climate Risks Prone Areas 4.8 Agrometeorological Advisory Services (AAS) 4.9 Conclusion References Part II: Management of Natural Resources 5: Achieving Land Degradation Neutrality to Combat the Impacts of Climate Change 5.1 Introduction 5.1.1 Climate and Soil Interaction 5.1.2 Food Security in a Changing Climate 5.1.3 Does the Soil Properties and Processes Influence Climate Change? (Biogeochemical Cycles) 5.1.4 Soil Carbon Active and Inactive Pools 5.1.5 Soils and the Carbon Sequestration 5.2 Land Degradation Vis-à-Vis Agriculture 5.3 Biomass Production Threat to Food Security and Land Degradation 5.4 Sustainable Land Management (SLM) and Sustainable Forest Management (SFM) 5.5 The Human Facet of Land Degradation and Forest Degradation 5.6 Factors Affecting Land Degradation 5.6.1 Processes of Land Degradation 5.6.2 Types of Land Degradation Processes 5.6.3 Drivers of Land Degradation 5.7 Attribution of Climate Change Concerning Land Degradation 5.8 Localized Efforts to Combat Land Deterioration 5.9 Predictions of Land Deterioration Due to Climate Change 5.9.1 Land Degradation´s Direct Effects 5.9.2 Land Degradation´s Indirect Effects 5.9.3 Effects of Land Degradation Brought on by Climate Change on Food Security 5.10 Land Degradation Neutrality (LDN) 5.11 Potential Options in Achieving LDN 5.11.1 Agricultural and Soil Management Techniques 5.11.2 Mechanically Conserving Soil and Water 5.11.3 Agroforestry 5.11.4 Local Farmers´ Knowledge of Addressing Land Degradation 5.11.5 Decreasing Deforestation, Improving Forest Quality, and Boosting Afforestation References 6: Establishing Linkages among Changes in Land Use, Vegetation, and Croplands to Arrest Soil Erosion and Desertification 6.1 Introduction 6.2 Land-Use Systems 6.3 Land-Use and Land-Cover Changes (LULC) 6.3.1 Types of Land -Use Changes and their Major Drivers 6.3.1.1 Deforestation 6.3.1.2 Rangeland Modification 6.3.1.3 Agricultural Intensification 6.3.1.4 Urbanization 6.4 Impact of Land-Use Change on Land Degradation 6.4.1 Impact of Changes in Land Use on Soil Erosion 6.4.2 Impact of Changes in Land Use on Land Degradation and Desertification 6.5 Impact of Changes in Vegetation on Soil Erosion 6.5.1 Mechanism of Vegetation Effects on Soil Erosion 6.6 Impact of Changes on Vegetation Due to Land Degradation and Desertification 6.7 Impact of Changes in Cropland on Soil Erosion 6.7.1 Soil Erosion and Cropland 6.8 Impact of Changes in Cropland on Land Degradation and Desertification 6.9 Establishing Relationship between Land-Use Changes and Vegetation on Soil Erosion and Degradation 6.10 Alternate Land-Use Strategies for Arresting Soil Erosion and Land Degradation 6.11 Conclusion References 7: Management of Salt-Affected Soils for Increasing Crop Productivity 7.1 Introduction 7.2 Factors for Development of Salt-Affected Soils 7.3 Classification and Characteristics of Salt-Affected Soils 7.3.1 Saline Soils 7.3.2 Alkali Soils 7.3.3 Saline-Alkali Soils 7.4 Reclamation and Management of Salt-Affected Soils 7.4.1 Physical Methods 7.4.1.1 Scraping 7.4.1.2 Sanding 7.4.1.3 Profile Inversion 7.4.1.4 Deep Ploughing and Subsoiling 7.4.1.5 Leaching 7.4.1.6 Drainage System 7.4.2 Chemical Methods 7.4.3 Biological Methods 7.5 Approaches for Strengthening both Productivity and Income of Farmers 7.6 Conclusions References 8: Role of Water Harvesting and Supplemental Irrigation in Enhancing Agriculture Productivity of Dryland under Climate Change 8.1 Introduction 8.2 Role of Climate-Resilient Water Management in Dryland Agriculture 8.2.1 Concept and Component of Water Harvesting 8.2.2 Water Harvesting Techniques 8.2.2.1 Micro-Catchment System 8.2.2.2 Macro-Catchment System 8.2.2.3 Indian Traditional Water Harvesting Structures 8.2.2.4 Modern Methods of Water Harvesting Structures 8.2.3 Water Storage and Purpose 8.3 Supplemental Irrigation 8.3.1 Characteristics of Supplemental Irrigation (SI) 8.4 Role of Water Harvesting and Supplemental Irrigation in Enhancing Agricultural Productivity of Drylands under Climate Chan... 8.4.1 Increase in Water Productivity 8.4.2 Increase in Crop Productivity 8.4.3 Deficit Supplemental Irrigation 8.4.4 Supplemental Irrigation in Protected Cultivation 8.4.5 Optimization of Supplemental Irrigation 8.4.6 Increasing Land and Water Productivity by Adopting Supplemental Irrigation 8.5 Effect of Water Harvesting on Land and Water Productivity 8.5.1 Increasing Land and Water Productivity by Adopting Water Harvesting 8.5.2 In-Situ Rainwater Harvesting 8.5.3 Ex-Situ Rainwater Harvesting 8.6 Future Prospects and Conclusion References 9: Assessment and Management of Soil and Water Erosion in Dryland Ecosystem 9.1 Introduction 9.2 Land Degradation in Dryland Ecosystems 9.3 Drivers of Land Degradation and its Consequences 9.3.1 Direct Drivers 9.3.1.1 Soil Erosion 9.3.1.2 Climate Change 9.3.1.3 Land-Use Change 9.3.2 Indirect Drivers 9.3.2.1 Intensive Agriculture 9.3.2.2 Salinity Hazard 9.3.2.3 Ineffective Planning and Governance Policies 9.4 Sustainable Land Management Strategies 9.5 Conclusion References 10: Advances in Micro-Irrigation Practices for Improving Water Use Efficiency in Dryland Agriculture 10.1 Introduction 10.2 Status of Micro-Irrigation in India and at a Global Scale 10.2.1 Global Scenario of Sprinkler and Micro-Irrigation 10.2.2 Indian Scenario of Sprinkler and Micro-Irrigation 10.2.3 Timeline of Micro-Irrigation Development in India 10.3 Climate Change and Water Use Efficiency 10.3.1 Water Use Efficiency (WUE): A Concept 10.3.2 Climate Change Impact on Water Availability, Demand, and WUE 10.4 Advances Micro-Irrigation Technologies for Enhancing Water use Efficiency 10.4.1 Deficit Irrigation (DI) 10.4.2 Partial Root-Zone Drying (PRD) 10.4.3 Alternate Partial Root-Zone Irrigation (APRI) 10.4.4 Wastewater Application Using MIS 10.4.5 Reverse Osmosis Subsurface Drip Irrigation 10.4.6 Internet of Things (IoT) in Micro-Irrigation 10.4.7 Soil Moisture Sensor in Micro-Irrigation 10.5 Potential and Challenges of Micro-Irrigation in Dryland Agriculture 10.6 Conclusions References 11: Enhancing Agricultural Water Productivity Using Deficit Irrigation Practices in Water-Scarce Regions 11.1 Introduction 11.2 Definition and Feature of DI 11.3 Types of Deficit Irrigation 11.3.1 Regulated Deficit Irrigation 11.3.2 Partial Root Zone Drying 11.4 Water Productivity and Deficit Irrigation 11.5 Deficit Irrigation Scheduling 11.6 Techniques for Enhancing Water Use Efficiency 11.6.1 Agronomical Measures 11.6.2 Mulching 11.6.3 Tillage 11.6.4 Intercropping/Mixed Cropping and Crop Rotation 11.6.5 Nutrient Management 11.6.6 Use of Antitranspirants 11.6.7 Crop Choice and Improved Varieties 11.6.8 Engineering Measures 11.6.9 Water Harvesting 11.6.10 In Situ Water Conservation 11.6.11 Terraces 11.6.12 Contour Furrow 11.6.13 Contour Bunds 11.6.14 Tied Ridges 11.6.15 Land Levelling with Lasers and Mini Benches 11.6.16 Windbreaks and Shelterbelts 11.7 Irrigation Methods 11.7.1 Alternate Furrow Irrigation (AFI) Method 11.7.2 Surge Irrigation 11.7.3 Pressurized Irrigation System 11.7.4 Sensor-Based Irrigation System 11.7.5 Decision Support System (DSS) 11.7.6 IOT-Based Smart Irrigation System 11.8 Economics of Deficit Irrigation Strategies 11.8.1 Bio-Economic Model for Deficit Irrigation 11.8.2 Land Limiting Condition and Opportunity Cost of Water 11.8.3 Empirical Models Used in Deficit Irrigation Economics 11.9 Conclusion and Outlook References 12: Meta-Analysis Studies Emphasizing Activities Related to Natural Resources Management for Imparting Resilience to Dryland A... 12.1 Introduction 12.2 Main Dryland Agricultural Areas Worldwide 12.3 Keys Challenges and Issues in Dryland Agriculture 12.3.1 Declining Natural Resources Management 12.3.2 Climate Change Scenario in Dryland Agriculture 12.3.3 Socioeconomic Issues 12.4 Opportunities for Dryland Agriculture Resilience 12.4.1 Technological Approaches 12.4.2 Efficient Soil, Water, and Nutrient Management 12.4.3 Improved Agronomic Practices 12.4.4 Breeding and Genetic Resources for Abiotic Stress 12.4.5 Use of GIS and Remote Sensing and Simulation Models for Identifying the Constraints and Yield-Gap Analysis 12.4.6 Policies that Need to be Adopted 12.5 Conclusions and Future Directions References Part III: Improving Sustainability of Dryland Farming System by Improving Reliability and Resilience 13: Soil Organic Carbon Sequestration in Dryland Soils to Alleviate Impacts of Climate Change 13.1 Introduction 13.2 Need for Carbon Sequestration in Dryland Regions 13.2.1 Precipitation on Carbon Sequestration 13.2.2 Temperature on Carbon Sequestration 13.2.3 Soil Erosion on Carbon Sequestration 13.2.4 Soil Organic Matter Content on Carbon Sequestration 13.2.5 Soil Biodiversity and Livestock on Carbon Sequestration 13.2.6 Social and Economic Barriers to Carbon Sequestration 13.3 Dry Land as an Organic Carbon Storage Zone 13.4 Desertification and Organic Carbon Sequestration Potential 13.4.1 Biochar as Organic Carbon Source 13.4.2 Ramial Chipped Wood (RCW) on Carbon Sequestration 13.5 Soil Organic Carbon Sequestration in Mitigating Climate Change 13.5.1 Humus on Carbon Sequestration 13.5.2 Is there any Specific Carbon Concentration in Soil? 13.5.3 Improving Soil Health and Mitigating Climate Change 13.6 Climate Change´s Possible Effects on Soil Quality and Soil Organic Matter 13.7 Potential of World Soil on Carbon Sequestration 13.8 Climate Change Adaptation and Mitigation 13.8.1 Alternate Land-Use Systems 13.8.2 Agroforestry 13.8.3 Efficient Water Management Techniques 13.8.4 Resource Conservation Technologies 13.9 Development of Policies Related to Carbon Sequestration in Dry Land 13.10 Conclusions References 14: Soil Inorganic Carbon in Dry Lands: An Unsung Player in Climate Change Mitigation 14.1 Introduction 14.2 Carbon Sequestration in Dry Lands 14.3 Dry Land: A Store House of SIC 14.4 Factors Affecting SIC Storage 14.4.1 Soil Factors 14.4.1.1 Soil pH 14.4.1.2 Soil Microbial Activity and Respiration 14.4.1.3 Other Soil Physicochemical Properties 14.4.2 Anthropogenic Factors 14.5 SIC and Climate Change 14.6 Conclusion References 15: Remediation of Polluted Soils for Managing Toxicity Stress in Crops of Dryland Ecosystems 15.1 Introduction 15.2 Kinds of Pollutants 15.2.1 Heavy Metals 15.2.2 Radionuclides 15.2.3 Asbestos 15.2.4 Organic Pollutants 15.2.5 Emerging Pollutants 15.3 Strategies for Remediation of Polluted Soils 15.3.1 Physicochemical Methods 15.3.1.1 Landfilling 15.3.1.2 Excavation and off-Site Disposal of Polluted Soils 15.3.1.3 Surface Capping 15.3.1.4 Encapsulation 15.3.1.5 Soil Washing (Soil Flushing) 15.3.1.6 Soil Vapour Extraction 15.3.1.7 Solidification 15.3.1.8 Chemical Immobilization 15.3.1.9 Chemical Dehalogenation 15.3.1.10 Chemical Oxidation-Reduction 15.3.1.11 Activated Carbon 15.3.2 Thermal Remediation Techniques 15.3.2.1 Thermal Desorption 15.3.2.2 Incineration 15.3.2.3 Vitrification 15.3.2.4 Pyrolysis 15.3.2.5 Hot Air Injection 15.3.2.6 Steam Injection 15.3.2.7 Smouldering 15.3.2.8 Radiofrequency and Microwave Heating 15.3.2.9 Electric Resistance Heating (ERH) 15.3.2.10 Electrokinetic Separation 15.3.2.11 Photocatalytic Oxidation 15.3.3 Biological Techniques 15.3.3.1 Phytoremediation 15.3.3.2 Phytostabilization 15.3.3.3 Phytostimulation 15.3.3.4 Phytodegradation 15.3.3.5 Phytoextraction (Phytoaccumulation) 15.3.3.6 Disposal of Hyperaccumulators 15.3.3.7 Limitations of Phytoremediation 15.3.3.8 Bioventing 15.3.3.9 Bioslurping 15.3.3.10 Biosparging 15.3.3.11 Biostimulation 15.3.3.12 Bioaugmentation 15.3.3.13 Bioattenuation 15.3.3.14 Landfarming 15.3.3.15 Composting 15.3.3.16 Biopiling 15.3.3.17 Slurry Phase 15.3.4 Application of Nanotechnology in Remediation of Polluted Soils 15.4 Selection of Remediation Technologies 15.5 Conclusion References 16: Fertilizer Management in Dryland Cultivation for Stable Crop Yields 16.1 Introduction 16.2 Integrated Nutrient Management Strategy for Nutrient Management in Dryland Agriculture 16.2.1 Concept of INM 16.2.2 Steps to Formulate INM Strategies 16.2.3 Principles of INM and Improved Fertilizer Management Through INM 16.2.4 Progress in INM Practices 16.3 Nutrient Management Through Principles of Conservation Agriculture 16.3.1 Nutrient Management in Dryland Regions Through Each Principle of CA 16.4 Use of Biofertilizer in Dry Lands as Viable Option for Source of Nutrient to Plants 16.5 Use of Biochar for Nutrient Management in Dryland Areas 16.6 Time and Place of Nutrient Application in Dryland Areas 16.7 Conclusion References 17: Development of a Successful Integrated Farming System Model for Livelihood Sustenance of Dryland Farmers 17.1 Introduction and Background 17.2 Strategies to Increase Farm Income 17.3 Status of Smallholders 17.4 Challenges before Smallholders 17.5 Necessity of Integrated Farming System 17.6 Integrated Farming System Model/Modules 17.6.1 Model/Modules for Small-Scale Farming 17.6.2 Models/Modules for Dryland Farming Systems 17.6.3 Model/Modules for Landless Farmers 17.7 Added Advantages of IFS 17.7.1 Economic Contribution 17.8 Vertical Farming 17.9 Small Farm Mechanization 17.10 Resource Recycling 17.11 Employment Generation 17.12 Conclusion and Way Forward References 18: Unlocking Potential of Dryland Horticulture in Climate-Resilient Farming 18.1 Introduction 18.2 Problems Associated with Dryland Farming 18.2.1 Soil 18.2.2 Water 18.2.3 Rainfall 18.2.4 Heat and Wind 18.2.5 Disease and Pest Infestations 18.3 Climate Change´s Impact on Growth and Development of Crops 18.4 Strategies for Resistance to Climate Change-Related Adversity Mitigation and Adaptation 18.5 The Biodiversity of the Hot Arid Zone 18.6 Criteria for Crop and Variety Selection 18.7 Principles of Dryland Farming Techniques 18.7.1 Prevent a Crust at the Soil Surface 18.7.2 Reducing the Moisture Loss from Soil 18.7.3 Reducing Transpiration 18.8 Climate-Resilient Technological Interventions 18.8.1 Summer Fallow 18.8.2 Bunding 18.8.3 Agro-horticulture (Intercropping) 18.8.4 Water Management 18.8.4.1 Water Shed Management 18.8.4.2 Rainwater Conservation and Harvesting 18.8.4.3 Improved Irrigation Systems and Micro-irrigation 18.8.5 Mulching 18.8.6 Use of Plant Growth Regulators and Chemicals 18.8.7 Plant Architecture and Canopy Management 18.8.8 Integrated Nutrient Management 18.8.9 Integrated Pest Management (IPM) Strategies 18.8.10 Precision Farming 18.8.11 Post-harvest Management 18.9 Prospects of Dryland Horticulture 18.10 Innovation in Technology Transfer 18.11 Opportunities in Arid Horticulture to Combat the Negative Impact of Climate Change 18.12 Conclusion References Part IV: Crop Improvement and Pest Management 19: Genetically Modified Crops and Crop Species Adapted to Global Warming in Dry Regions 19.1 Introduction 19.2 Genetically Modified Crops in Dry Regions 19.3 Techniques for GMO Development 19.3.1 Transgenesis 19.3.2 Cisgenesis 19.3.3 Intragenesis 19.3.4 Genome Editing 19.4 Safety Assessment of GMOs 19.5 GMO Regulation and Legislations 19.6 Conclusion and Future Prospects References 20: Weed Management in Dryland Agriculture 20.1 Introduction 20.2 Attributes of Dryland Weeds 20.3 Factors Affecting Weed Emergence in Dryland Areas 20.3.1 Climatic Factors 20.3.2 Edaphic Factors 20.3.3 Biotic Factors 20.4 Critical Period of Crop-Weed Competition 20.5 Weed Shift Vulnerability in Drylands 20.6 Economic Losses Caused by Weeds in India and Other Countries 20.7 Dryland Weed Management Strategies 20.7.1 Preventive Methods 20.7.2 Cultural Methods 20.7.3 Thermal Methods 20.7.4 Soil Solarization 20.7.5 Weed Flaming 20.7.6 Weed Steaming 20.7.7 Mechanical Methods 20.7.8 Chemical Methods 20.7.9 Biological Methods 20.7.10 Biotechnological Methods 20.7.11 Herbicide-Resistant Crops 20.7.12 Bio-Herbicides 20.7.13 Allelopathy 20.7.14 Development of Transgenic Allelopathy in Crops 20.7.15 Characterization of Weeds Using Molecular Systematics 20.7.16 Improved Resource Conservation Technologies 20.7.16.1 Conservation Agriculture (CA) 20.7.16.2 Bed Planting 20.7.16.3 Crop Diversification 20.7.16.4 Brown Manuring 20.7.16.5 Sub-Surface Drip Irrigation 20.7.16.6 Precision Weed Management 20.7.16.7 Agricultural Robotics for Weed Management 20.7.16.8 Integrated Weed Management 20.8 Conclusion References 21: Insect and Pest Management for Sustaining Crop Production Under Changing Climatic Patterns of Drylands 21.1 Introduction 21.2 Effects of Climate Change in Drylands 21.2.1 Insect Pest Biology 21.2.2 Pest Status 21.2.3 Invasive Insect Species 21.3 Impact on Pest Management Strategies 21.3.1 Chemical Control 21.3.2 Cultural and Physical Control 21.3.3 Host Plant Resistance 21.3.4 Biological Control 21.4 Conclusions References 22: Potential Effects of Future Climate Changes in Pest Scenario 22.1 Introduction 22.2 Effect of Elevated Temperature on Pest Dynamics 22.2.1 Increase in Geographical Range 22.2.2 Increase in the Number of Generations of Insect Pest 22.2.3 Overwintering Survival 22.2.4 Impact on Biocontrol Agents 22.2.5 Impact on Invasive Species 22.3 Effect of Precipitation on Insect Pests 22.4 Effect of Elevated CO2 Concentrations on Insect Pests 22.5 Pest Management Under Climate Change Scenario 22.6 Conclusions References 23: Impact of Climate Change on Plant Viral Diseases 23.1 Introduction 23.2 Effect of Elevated CO2 on Host, Vector and Virus 23.2.1 Elevated CO2 Impacts on Bell Pepper Growth with Consequences to Myzus persicae Life History, Feeding Behaviour and Viru... 23.3 Temperature 23.3.1 High Temperature Activates Local Viral Multiplication and Cell-to-Cell Movement of Melon Necrotic Spot Virus (MNSV) but... 23.3.2 Effect of Elevated CO2 and Temperature on Pathogenicity Determinants and Virulence of Potato Virus X (PVX)/Potyvirus-As... 23.4 Rainfall 23.4.1 Water Stress Modulates Soybean Aphid Performance, Feeding Behaviour and Virus Transmission in Soybean 23.4.2 Drought Reduces Transmission of Turnip Yellows Virus, an Insect-Vectored Circulative Virus 23.4.3 Epidemiology of ChiLCVD on Syngenta 5531 Chilli Hybrid 23.4.4 Pigeon pea Sterility Mosaic Disease 23.5 Conclusions References 24: Adaptation Strategies for Protected Cultivation Under Changing Climate Patterns in Dry Regions 24.1 Introduction 24.2 Need for Adaptation Strategies Under Protected Cultivation in Dry Regions 24.2.1 Impacts of Climate Change 24.2.1.1 Increase in Atmospheric CO2 24.2.1.2 Increase in Air Temperature 24.2.1.3 Change in Rainfall 24.2.1.4 Instability in Yields of High-Quality Products 24.2.1.5 The Impacts of Elevated Temperatures on Pests and Diseases 24.3 Different Adaptations Strategies for Protected Cultivation to Reduce the Climate Change Effect in Dry Regions 24.3.1 To Combat Climate Change, Greenhouse Gas Emissions Must Be Increased 24.3.2 To Reduce Water Scarcity, Water Consumption Must Be Reduced and Water Usage Efficiency Must Be Increased 24.3.2.1 Screenhouses 24.3.2.2 Semi-/Closed Greenhouses 24.3.3 For Winter Production, Increased Usage and Improvement of Natural and Extra Light 24.3.4 Heat Waves and Required Cooling 24.3.4.1 Cooling and Ventilation by Screens 24.3.4.2 Cooling in Passively Ventilated Greenhouses 24.3.4.3 Air Velocity and Ventilation Rate Are the Main Features to Efficient Passive Cooling 24.3.4.4 Semi-closed Greenhouse Cooling and Efficient Use of CO2 24.3.5 Plant Protection in a Changing Climate 24.3.6 Breeding 24.3.7 Ensuring Continuous Market Supply Under Climate Change 24.3.8 Other Adaptation Possibilities 24.4 Constraints in Adaptive Strategies in Protected Cultivation Under Climate Change (CC) in Dry Region 24.4.1 Climate Change Impacts 24.4.1.1 Impacts of Climate Change on Crop Production in Protected Environments 24.4.1.2 The Impacts of Increasing Atmospheric CO2 24.4.1.3 The Impacts of Changing Precipitation Patterns 24.4.1.4 The Impacts of High Summer Temperatures 24.4.1.5 The Impacts of Elevated Temperatures on Pests and Diseases 24.5 Conclusions and Future Prospects References 25: Organic Farming: Prospects and Challenges in Drylands 25.1 Introduction 25.2 Benefits of Organic Farming 25.2.1 Improvement in Soil Quality 25.2.2 Nutritional Benefits and Health Safety 25.2.3 Socioeconomic Impact 25.3 Specific Benefits of Organic Farming for the Drylands of India 25.4 Challenges for Organic Agriculture 25.5 Strategies for Promoting Organic Farming in Drylands 25.5.1 Popularize Organic Farming Without the Compulsion of Certification 25.5.2 Promote Ley Farming 25.5.3 Integrate Efforts of Supporting Agencies 25.5.4 Encourage Decentralized Input Supply 25.5.5 Adopt Improved Methods of Composting 25.5.6 Increase Public Awareness and Build Capacity 25.5.7 Subsidize Organic Inputs and Produce 25.5.8 Promote High-Value Crops 25.5.9 Develop Organic Farming Clusters of Villages 25.5.10 Develop Certification Programs and Marketing Chains 25.6 Organic Farming for the Drylands of India: Ecological Sustainability 25.7 Main Principles of Organic Farming 25.8 Future Prospectus of Organic Farming 25.9 Organic Agriculture and Sustainable Development 25.10 Social Sustainability 25.11 Importance of Dryland Farming 25.11.1 Characteristics of Dryland Agriculture in India 25.12 Problems of Dryland Farming 25.13 Conclusions References 26: Biochemical and Molecular Aspects for Plant Improvement Under Climate Stress 26.1 Introduction 26.2 Climate Change and Food Security: A Global Scenario 26.3 Crop Response Towards Climate-Driven Environmental Stresses 26.3.1 Morphological Response to Abiotic Stress 26.3.2 Cellular Response to Abiotic Stress 26.3.3 Photosynthetic Machinery Modulation and Gaseous Exchange 26.3.4 Osmotic Adjustment and Osmoprotectants 26.3.5 Oxidative Damage and ROS (Reactive Oxygen Species) Regulation 26.4 Plant Molecular Chaperones 26.4.1 Classification of HSPs 26.4.1.1 HSP100 Family 26.4.1.2 HSP90 Family 26.4.1.3 HSP70 Family 26.4.1.4 HSP60 Family 26.4.1.5 HSP40 Family 26.4.1.6 sHSP Family 26.5 Molecular Breeding Methods 26.5.1 QTLs for Drought Stress Tolerance 26.5.1.1 Wheat 26.5.1.2 Rice 26.5.1.3 Sorghum 26.5.1.4 Barley 26.5.1.5 Cotton 26.5.1.6 Common Bean 26.5.2 QTLs for High-Temperature Stress Tolerance 26.5.2.1 Wheat 26.5.2.2 Rice 26.5.3 QTLs for Low-Temperature Stress Tolerance 26.5.3.1 Rice 26.5.3.2 Maize 26.5.3.3 Barley 26.5.4 QTLs for Salinity Stress Tolerance 26.5.4.1 Wheat 26.5.4.2 Rice 26.5.5 QTLs for Water Lodging Stress Tolerance 26.5.6 QTLs for Water Submergence Stress Tolerance 26.6 Omics Techniques for Crop Improvement 26.6.1 Transcriptomics 26.6.2 Proteomics 26.6.3 Metabolomics 26.7 QTL Analysis-Based Breeding with Advanced Backcross (AB-Breeding) 26.8 Genomics-Assisted Breeding (GAB) 26.9 Next-Generation GAB Approaches 26.9.1 Genomic Selection (GS) 26.9.2 Genome Editing 26.10 Phenomics and Artificial Intelligence (AI) 26.11 Genome-Wide Association Study (GWAS) and Association Mapping (AM) 26.11.1 Genome-Wide Association Study (GWAS) 26.11.1.1 Rice 26.11.1.2 Upland Cotton 26.11.1.3 Wheat 26.11.1.4 Maize 26.11.2 Association Mapping (AM) 26.12 Future Perspectives of Crop Improvement for Stress Combination and Conclusion References Part V: Livestock Production and Management 27: Understanding Linkages Between Livestock Sensitivity and Climate Variability in Drylands for Developing Appropriate Manage... 27.1 Introduction 27.2 Dryland Livestock and Government Schemes 27.3 Impact of Climate Change on Dryland Livestock 27.4 Species: Wise Impact of Climate Change 27.5 Strategies for Dryland Livestock Development vis-à-vis Changing Climates 27.5.1 Livestock Breeding 27.5.2 Livestock Production and Management 27.5.3 Climate Change Mitigation Through Improved Husbandry Practices 27.5.4 Participatory Approach 27.6 Conclusions References 28: Grass-Legume Intercropping for Enhancing Quality Fodder Production in Drylands 28.1 Introduction 28.2 The Concept of Intercropping and Its Mechanisms 28.2.1 Types of Intercropping 28.2.1.1 Mixed Intercropping 28.2.1.2 Row Intercropping 28.2.1.3 Strip Intercropping 28.2.1.4 Relay Cropping 28.2.2 Crop Combinations in Intercropping 28.2.3 The Need for Intercropping of Grasses and Legumes 28.3 Advantages of Grass-Legume Intercropping 28.3.1 Yield Advantage 28.3.2 Fodder Quality 28.3.3 Suppresses Weeds 28.3.4 Improved Use of Resources 28.4 Limitations of Grass-Legume Intercropping 28.5 Conclusion References Part VI: Improving Livelihood and Socio-Economic Status of Dryland Farmers 29: Economic Analysis of Sustainable Dryland Agriculture Practices 29.1 Introduction 29.2 Dryland Farming Techniques 29.2.1 Increase Water Absorption 29.2.2 Reduce the Run-Off of Water 29.2.3 Reducing Soil Evaporation 29.2.4 Reducing Transpiration 29.3 Agricultural Economists Can Improve the Quality and Comprehensiveness of Agricultural Systems Research in Six Areas 29.4 Budgeting and Investment Analysis 29.5 Methodology 29.6 Conclusions 29.7 Recommendations References 30: Adoption of Sustainable Dryland Technologies for Improving Livelihood of Farmers in Developing Countries 30.1 Introduction 30.2 Importance of Dryland Agriculture in Ensuring Livelihood 30.2.1 Helps in Ensuring the Nutritional Security 30.2.2 Dryland Farming Helps in Reduction of Desertification Process 30.2.3 Source of Livelihood for Large Chunk of Population 30.2.4 Dryland Offers Good Source of Development 30.2.5 Dryland Agriculture Is Key to Food Security 30.3 Constraints of Dryland Agriculture 30.3.1 Prevalence of Heat and Wind 30.3.2 Soil and Moisture Problems 30.3.3 Environmental Changes of Waterlogging and Salinity 30.3.4 Dietary Habits and Nutritional Characteristics of Crops Grown 30.3.5 Limited and Uneven Distribution of Rainfall 30.3.6 Large-Scale Prevalence of Monocropping 30.3.7 Poor Fertility Status in Marginal Lands and Low Productivity 30.3.8 Socioeconomic Constraints of the Dryland Farmers 30.4 Soil and Water Management Techniques 30.4.1 Summer Ploughing 30.4.2 Ridges and Furrows 30.4.3 Contour Farming 30.4.4 Ploughing Across the Slope 30.4.5 Vegetative Barriers 30.4.6 Intercropping 30.4.7 Strip Cropping 30.4.8 Mulching 30.4.9 Alternate Land Use Pattern 30.4.10 Broad Beds and Furrows 30.4.11 Contour Bunding 30.4.12 Contour Trenches 30.4.13 Compartmental Bunding 30.4.14 Random Tied Ridging 30.4.15 Basin Listing 30.4.16 Microcatchment 30.4.17 Percolation Ponds 30.4.18 Check Dams 30.5 Crop Production Technologies for Dryland Areas 30.5.1 Crop Management Practices 30.5.2 Soil Management 30.5.3 Use of Mulches 30.5.4 Use of Anti-transpirants 30.6 Dry Spells Immediately After Sowing 30.7 Break in Monsoon, Mid-season or Late 30.8 Techniques to Reduce Evapotranspiration Loss and Improve Water Use Efficiency 30.8.1 Mulching 30.8.2 Soil Fertility Management 30.8.3 Genetic Improvement of Crops 30.8.4 Seeding Rate and Planting Pattern 30.8.5 Planting Calendar 30.8.6 Water Management 30.8.7 Weed Management 30.9 Factors Affecting Adoption of Improved Farm Technologies 30.9.1 Socioeconomic Factors 30.9.2 Variation in Climatic Conditions 30.9.2.1 Accessibility to Farm Technologies 30.9.2.2 Marketing Linkages 30.9.2.3 Institutional Support 30.10 Adoption of Sustainable Dryland Technologies: Successful Case Studies from Developing Countries of the World 30.11 Conclusion References 31: Challenges and Prospects in Managing Dryland Agriculture Under Climate Change Scenario 31.1 Introduction 31.2 Impact of Climate Changes on Dryland Agriculture 31.3 Challenges in Dryland Agriculture 31.3.1 Inadequate and Uneven Distribution of Rainfall 31.3.2 Late-Onset and Early Cessation of Rains 31.3.3 Drought 31.3.4 Prolonged Dry Spells during the Crop Period 31.3.5 Low Moisture Retention Capacity 31.3.6 Low Fertility of Soils 31.4 Strategies to Mitigate the Effects of Climate Change on Dryland Agriculture 31.5 Future Perspectives 31.6 Conclusion References 32: Adaptive Resilience: Sustaining Dryland Agriculture the Pastoralist Way 32.1 Introduction 32.2 Pastoralism in Drylands 32.3 Pastoral Resilience 32.3.1 Mobility 32.3.2 Diversity 32.3.3 Flexibility 32.3.4 Reciprocity 32.4 Impact of Climate Change in Drylands 32.4.1 Variability in Climatic Patterns 32.4.2 Variability in Vegetation 32.4.3 Variability in Soil Carbon Content 32.5 Pastoralism Vis-à-Vis Climate Change 32.6 Strengthening Pastoral Resilience 32.6.1 Short-Term Adaptation Strategies 32.6.1.1 Insurance Products 32.6.1.2 Early Warning Systems 32.6.1.3 Customized Credit Availability 32.6.2 Long-Term Adaptation Strategies 32.6.2.1 Availability of Basic Infrastructure and Services 32.6.2.2 Acknowledging Ecological Contribution 32.6.2.3 Governance and Land Tenure Rights 32.6.2.4 Regional Dimensions of Pastoralism 32.7 Conclusions References Part VII: Farm Mechanization in Dryland Agriculture 33: Resource Conserving Mechanization Technologies for Dryland Agriculture 33.1 Introduction 33.2 Resource Conserving Technologies for Tillage, Seed Bed Preparation, and Sowing Operations 33.2.1 Chisel Plough 33.2.2 Subsoiler 33.2.3 Blade Harrow 33.2.4 Laser Land Leveller 33.2.5 Duck Foot/Sweep Cultivator 33.2.6 Mulcher 33.2.7 Strip-Till Drill 33.2.8 Turbo Happy Seeder 33.2.9 Seeder/Planter Cum Herbicide Applicator 33.2.10 Pneumatic Precision Planter 33.2.11 Multi-Crop Raised Bed Planter/Broad Bed Furrow (BBF) Planter 33.3 Resource Conserving Technologies in Fertilizer and Chemical Applications 33.3.1 Ultrasonic Orchard Sprayer 33.3.2 Electrostatic Sprayer 33.3.3 Unmanned Aerial Vehicles (UAV)/Drones 33.3.4 Tractor-Operated High Clearance Boom Sprayer 33.4 Water-Conserving Technologies 33.4.1 Drip Irrigation System 33.4.2 Subsurface Drip Irrigation System 33.4.3 Sprinkler Irrigation System 33.4.4 Plastic Mulch Laying Machine 33.4.5 Conservation Agriculture 33.5 Effective Technologies for Mechanical Control of Weeds 33.5.1 Narrow Tyne/Interrow Cultivator/Interrow Weeder 33.5.2 Spring Tyne Harrow 33.5.3 Intra-Row Weeder 33.5.4 Self-Propelled Power Weeder 33.6 Resource Conserving Technologies for Harvesting and Threshing Operations 33.6.1 Self-Propelled Reaper 33.6.2 Cotton Stalk Shredder 33.6.3 Multi-Crop Thresher 33.7 Conclusion References 34: Agricultural Mechanization for Efficient Utilization of Input Resources to Improve Crop Production in Arid Region 34.1 Introduction 34.1.1 An Overview of Agricultural Mechanization 34.1.2 Status and Scope of Agricultural Mechanization in the Arid Region 34.1.3 Rajasthan Government´s Initiatives for Farm Mechanization 34.2 Farm Mechanization in the Arid Region 34.2.1 Tillage 34.2.2 Sowing/Transplanting 34.2.3 Weeding and Intercultural Operations 34.2.4 Irrigation 34.2.5 Plant Protection Operations 34.2.6 Harvesting and Threshing 34.3 Socio-Economic Aspect of Farm Mechanization 34.3.1 Drudgery Involved in the Farm Operation 34.3.2 Cost-Economics of Agricultural Machineries 34.4 Future Mechanization Pathway through IoT-Based Technologies 34.4.1 Mechatronics 34.4.2 Precision Agriculture 34.4.3 Robotics in Agricultural Work 34.4.4 Use of Internet of Things in Agricultural Implements 34.4.5 Artificial Intelligence 34.5 Conclusions References